| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125 |
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import paddle
- from paddlex.ppdet.modeling.mot.utils import scale_coords
- from paddlex.ppdet.core.workspace import register, create
- from .meta_arch import BaseArch
- __all__ = ['JDE']
- @register
- class JDE(BaseArch):
- __category__ = 'architecture'
- __shared__ = ['metric']
- """
- JDE network, see https://arxiv.org/abs/1909.12605v1
- Args:
- detector (object): detector model instance
- reid (object): reid model instance
- tracker (object): tracker instance
- metric (str): 'MOTDet' for training and detection evaluation, 'ReID'
- for ReID embedding evaluation, or 'MOT' for multi object tracking
- evaluation。
- """
- def __init__(self,
- detector='YOLOv3',
- reid='JDEEmbeddingHead',
- tracker='JDETracker',
- metric='MOT'):
- super(JDE, self).__init__()
- self.detector = detector
- self.reid = reid
- self.tracker = tracker
- self.metric = metric
- @classmethod
- def from_config(cls, cfg, *args, **kwargs):
- detector = create(cfg['detector'])
- kwargs = {'input_shape': detector.neck.out_shape}
- reid = create(cfg['reid'], **kwargs)
- tracker = create(cfg['tracker'])
- return {
- "detector": detector,
- "reid": reid,
- "tracker": tracker,
- }
- def _forward(self):
- det_outs = self.detector(self.inputs)
- if self.training:
- emb_feats = det_outs['emb_feats']
- loss_confs = det_outs['det_losses']['loss_confs']
- loss_boxes = det_outs['det_losses']['loss_boxes']
- jde_losses = self.reid(emb_feats, self.inputs, loss_confs,
- loss_boxes)
- return jde_losses
- else:
- if self.metric == 'MOTDet':
- det_results = {
- 'bbox': det_outs['bbox'],
- 'bbox_num': det_outs['bbox_num'],
- }
- return det_results
- elif self.metric == 'ReID':
- emb_feats = det_outs['emb_feats']
- embs_and_gts = self.reid(emb_feats, self.inputs, test_emb=True)
- return embs_and_gts
- elif self.metric == 'MOT':
- emb_feats = det_outs['emb_feats']
- emb_outs = self.reid(emb_feats, self.inputs)
- boxes_idx = det_outs['boxes_idx']
- bbox = det_outs['bbox']
- input_shape = self.inputs['image'].shape[2:]
- im_shape = self.inputs['im_shape']
- scale_factor = self.inputs['scale_factor']
- bbox[:, 2:] = scale_coords(bbox[:, 2:], input_shape, im_shape,
- scale_factor)
- nms_keep_idx = det_outs['nms_keep_idx']
- pred_dets = paddle.concat((bbox[:, 2:], bbox[:, 1:2]), axis=1)
- emb_valid = paddle.gather_nd(emb_outs, boxes_idx)
- pred_embs = paddle.gather_nd(emb_valid, nms_keep_idx)
- online_targets = self.tracker.update(pred_dets, pred_embs)
- return online_targets
- else:
- raise ValueError(
- "Unknown metric {} for multi object tracking.".format(
- self.metric))
- def get_loss(self):
- return self._forward()
- def get_pred(self):
- return self._forward()
|