| 12345678910111213141516171819202122232425262728293031 |
- import paddlex as pdx
- import os
- os.environ['CUDA_VISIBLE_DEVICES'] = '0'
- # 下载训练好的模型
- url = 'https://bj.bcebos.com/paddlex/models/mobilenetv2_vegetables.tar.gz'
- pdx.utils.download_and_decompress(url, path='.')
- # 下载相应的训练数据集
- url = 'https://bj.bcebos.com/paddlex/datasets/vegetables_cls.tar.gz'
- pdx.utils.download_and_decompress(url, path='.')
- # 加载模型
- model = pdx.load_model('mobilenetv2_vegetables')
- # 将正常模型导出为部署格式,用于对比
- import time
- for i in range(60):
- print('save', i)
- time.sleep(1)
- model.export_inference_model('server_mobilenet')
- # 加载数据集用于量化
- dataset = pdx.datasets.ImageNet(
- data_dir='vegetables_cls',
- file_list='vegetables_cls/train_list.txt',
- label_list='vegetables_cls/labels.txt',
- transforms=model.test_transforms)
- # 开始量化
- pdx.slim.export_quant_model(model, dataset, save_dir='./quant_mobilenet', cache_dir='./tmp')
|