app.py 31 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905
  1. from flask import Flask, request, render_template, send_from_directory, jsonify, session, send_file
  2. from werkzeug.utils import secure_filename
  3. from flask_cors import CORS
  4. import argparse
  5. from os import path as osp
  6. import os
  7. import time
  8. import json
  9. import sys
  10. import multiprocessing as mp
  11. from . import workspace_pb2 as w
  12. from .utils import CustomEncoder, ShareData, is_pic, get_logger
  13. import numpy as np
  14. app = Flask(__name__)
  15. CORS(app, supports_credentials=True)
  16. SESSION_TYPE = 'filesystem'
  17. app.config.from_object(__name__)
  18. SD = ShareData()
  19. def init(dirname, logger):
  20. #初始化工作空间
  21. from .workspace import init_workspace
  22. from .system import get_system_info
  23. SD.workspace = w.Workspace(path=dirname)
  24. init_workspace(SD.workspace, dirname, logger)
  25. SD.workspace_dir = dirname
  26. get_system_info(SD.machine_info)
  27. @app.errorhandler(Exception)
  28. def handle_exception(e):
  29. ret = {"status": -1, 'message': repr(e)}
  30. return ret
  31. @app.route('/workspace', methods=['GET', 'PUT'])
  32. def workspace():
  33. """
  34. methods=='GET':获取工作目录中项目、数据集、任务的属性
  35. Args:
  36. struct(str):结构类型,可以是'dataset', 'project'或'task',
  37. id(str):结构类型对应的id
  38. attr_list(list):需要获取的属性的列表
  39. Return:
  40. attr(dict):key为属性,value为属性的值,
  41. status
  42. methods=='PUT':修改工作目录中项目、数据集、任务的属性
  43. Args:
  44. struct(str):结构类型,可以是'dataset', 'project'或'task',
  45. id(str):结构类型对应的id
  46. attr_dict(dict):key:需要修改的属性,value:需要修改属性的值
  47. Return:
  48. status
  49. """
  50. data = request.get_json()
  51. if data is None:
  52. data = request.args
  53. if request.method == 'GET':
  54. if data:
  55. from .workspace import get_attr
  56. ret = get_attr(data, SD.workspace)
  57. return ret
  58. return {'status': 1, 'dirname': SD.workspace_dir}
  59. if request.method == 'PUT':
  60. from .workspace import set_attr
  61. ret = set_attr(data, SD.workspace)
  62. return ret
  63. @app.route('/dataset', methods=['GET', 'POST', 'PUT', 'DELETE'])
  64. def dataset():
  65. """
  66. methods=='GET':获取所有数据集或者单个数据集的信息
  67. Args:
  68. did(str, optional):数据集id(可选),如果存在就返回数据集id对应数据集的信息
  69. Ruturn:
  70. status
  71. if 'did' in Args:
  72. id(str):数据集id,
  73. dataset_status(int):数据集状态(DatasetStatus)枚举变量的值
  74. message(str):数据集状态信息
  75. attr(dict):数据集属性
  76. else:
  77. datasets(list):所有数据集属性的列表
  78. methods=='POST':创建一个新的数据集
  79. Args:
  80. name(str):数据集名字
  81. desc(str):数据集描述
  82. dataset_type(str):数据集类型,可以是['classification', 'detection', 'segmentation','instance_segmentation','remote_segmentation']
  83. Return:
  84. did(str):数据集id
  85. status
  86. methods=='PUT':异步,向数据集导入数据,支持分类、检测、语义分割、实例分割、摇杆分割数据集类型
  87. Args:
  88. did(str):数据集id
  89. path(str):数据集路径
  90. Return:
  91. status
  92. methods=='DELETE':删除已有的某个数据集
  93. Args:
  94. did(str):数据集id
  95. Return:
  96. status
  97. """
  98. data = request.get_json()
  99. if data is None:
  100. data = request.args
  101. if request.method == 'GET':
  102. if 'did' in data:
  103. from .dataset.dataset import get_dataset_status
  104. ret = get_dataset_status(data, SD.workspace)
  105. return ret
  106. from .dataset.dataset import list_datasets
  107. ret = list_datasets(SD.workspace)
  108. return ret
  109. if request.method == 'POST':
  110. from .dataset.dataset import create_dataset
  111. ret = create_dataset(data, SD.workspace)
  112. return ret
  113. if request.method == 'PUT':
  114. from .dataset.dataset import import_dataset
  115. ret = import_dataset(data, SD.workspace, SD.monitored_processes,
  116. SD.load_demo_proc_dict)
  117. return ret
  118. if request.method == 'DELETE':
  119. from .dataset.dataset import delete_dataset
  120. ret = delete_dataset(data, SD.workspace)
  121. return ret
  122. @app.route('/dataset/details', methods=['GET'])
  123. def dataset_details():
  124. """
  125. methods=='GET':获取某个数据集的详细信息
  126. Args:
  127. did(str):数据集id
  128. Return:
  129. details(dict):数据集详细信息,
  130. status
  131. """
  132. data = request.get_json()
  133. if data is None:
  134. data = request.args
  135. if request.method == 'GET':
  136. from .dataset.dataset import get_dataset_details
  137. ret = get_dataset_details(data, SD.workspace)
  138. return ret
  139. @app.route('/dataset/split', methods=['PUT'])
  140. def dataset_split():
  141. """
  142. Args:
  143. did(str):数据集id
  144. val_split(float): 验证集比例
  145. test_split(float): 测试集比例
  146. Return:
  147. status
  148. """
  149. data = request.get_json()
  150. if request.method == 'PUT':
  151. from .dataset.dataset import split_dataset
  152. ret = split_dataset(data, SD.workspace)
  153. return ret
  154. @app.route('/dataset/image', methods=['GET'])
  155. def dataset_img_base64():
  156. """
  157. Args:
  158. GET: 获取图片base64数据,参数:'path' 图片绝对路径
  159. """
  160. data = request.get_json()
  161. if request.method == 'GET':
  162. from .dataset.dataset import img_base64
  163. ret = img_base64(data)
  164. return ret
  165. @app.route('/dataset/file', methods=['GET'])
  166. def get_image_file():
  167. """
  168. Args:
  169. GET: 获取文件数据,参数:'path' 文件绝对路径
  170. """
  171. data = request.get_json()
  172. if request.method == 'GET':
  173. ret = data['path']
  174. return send_file(ret)
  175. @app.route('/dataset/npy', methods=['GET'])
  176. def get_npyfile():
  177. """
  178. Args:
  179. GET: 获取文件数据,参数:'path' npy文件绝对路径
  180. """
  181. data = request.get_json()
  182. if request.method == 'GET':
  183. npy = np.load(data['path'], allow_pickle=True).tolist()
  184. npy['gt_bbox'] = npy['gt_bbox'].tolist()
  185. return npy
  186. @app.route('/file', methods=['GET'])
  187. def get_file():
  188. """
  189. Args:
  190. path'(str):文件在服务端的路径
  191. Return:
  192. #数据为图片
  193. img_data(str): base64图片数据
  194. status
  195. #数据为xml文件
  196. ret:数据流
  197. #数据为log文件
  198. ret:json数据
  199. """
  200. data = request.get_json()
  201. if data is None:
  202. data = request.args
  203. if request.method == 'GET':
  204. path = data['path']
  205. if not os.path.exists(path):
  206. return {'status': -1}
  207. if is_pic(path):
  208. from .dataset.dataset import img_base64
  209. ret = img_base64(data, SD.workspace)
  210. return ret
  211. file_type = path[(path.rfind('.') + 1):]
  212. if file_type in ['xml', 'npy', 'log']:
  213. return send_file(path)
  214. else:
  215. pass
  216. @app.route('/project', methods=['GET', 'POST', 'DELETE'])
  217. def project():
  218. """
  219. methods=='GET':获取指定项目id的信息
  220. Args:
  221. 'id'(str, optional):项目id,可选,如果存在就返回项目id对应项目的信息
  222. Return:
  223. status,
  224. if 'id' in Args:
  225. attr(dict):项目属性
  226. else:
  227. projects(list):所有项目属性
  228. methods=='POST':创建一个项目
  229. Args:
  230. name(str): 项目名
  231. desc(str):项目描述
  232. project_type(str):项目类型
  233. Return:
  234. pid(str):项目id
  235. status
  236. methods=='DELETE':删除一个项目,以及项目相关的task
  237. Args:
  238. pid(str):项目id
  239. Return:
  240. status
  241. """
  242. data = request.get_json()
  243. if data is None:
  244. data = request.args
  245. if request.method == 'GET':
  246. from .project.project import list_projects
  247. from .project.project import get_project
  248. if 'id' in data:
  249. ret = get_project(data, SD.workspace)
  250. return ret
  251. ret = list_projects(SD.workspace)
  252. return ret
  253. if request.method == 'POST':
  254. from .project.project import create_project
  255. ret = create_project(data, SD.workspace)
  256. return ret
  257. if request.method == 'DELETE':
  258. from .project.project import delete_project
  259. ret = delete_project(data, SD.workspace)
  260. return ret
  261. @app.route('/project/task', methods=['GET', 'POST', 'DELETE'])
  262. def task():
  263. """
  264. methods=='GET':#获取某个任务的信息或者所有任务的信息
  265. Args:
  266. tid(str, optional):任务id,可选,若存在即返回id对应任务的信息
  267. resume(str, optional):获取是否可以恢复训练的状态,可选,需在存在tid的情况下才生效
  268. pid(str, optional):项目id,可选,若存在即返回该项目id下所有任务信息
  269. Return:
  270. status
  271. if 'tid' in Args:
  272. task_status(int):任务状态(TaskStatus)枚举变量的值
  273. message(str):任务状态信息
  274. type:任务类型包括{'classification', 'detection', 'segmentation', 'instance_segmentation'}
  275. resumable(bool):仅Args中存在resume时返回,任务训练是否可以恢复
  276. max_saved_epochs(int):仅Args中存在resume时返回,当前训练模型保存的最大epoch
  277. else:
  278. tasks(list):所有任务属性
  279. methods=='POST':#创建任务(训练或者裁剪)
  280. Args:
  281. pid(str):项目id
  282. train(dict):训练参数
  283. desc(str, optional):任务描述,可选
  284. parent_id(str, optional):可选,若存在即表示新建的任务为裁剪任务,parent_id的值为裁剪任务对应的训练任务id
  285. Return:
  286. tid(str):任务id
  287. status
  288. methods=='DELETE':#删除任务
  289. Args:
  290. tid(str):任务id
  291. Return:
  292. status
  293. """
  294. data = request.get_json()
  295. if data is None:
  296. data = request.args
  297. if request.method == 'GET':
  298. if data:
  299. if 'pid' not in data:
  300. from .project.task import get_task_status
  301. ret = get_task_status(data, SD.workspace)
  302. return ret
  303. from .project.task import list_tasks
  304. ret = list_tasks(data, SD.workspace)
  305. return ret
  306. if request.method == 'POST':
  307. from .project.task import create_task
  308. ret = create_task(data, SD.workspace)
  309. return ret
  310. if request.method == 'DELETE':
  311. from .project.task import delete_task
  312. ret = delete_task(data, SD.workspace)
  313. return ret
  314. @app.route('/project/task/params', methods=['GET', 'POST'])
  315. def task_params():
  316. """
  317. methods=='GET':#获取任务id对应的参数,或者获取项目默认参数
  318. Args:
  319. tid(str, optional):获取任务对应的参数
  320. pid(str,optional):获取项目对应的默认参数
  321. model_type(str,optional):pid存在下有效,对应项目下获取指定模型的默认参数
  322. gpu_list(list,optional):pid存在下有效,默认值为[0],使用指定的gpu并获取相应的默认参数
  323. Return:
  324. train(dict):训练或者裁剪的参数
  325. status
  326. methods=='POST':#设置任务参数,将前端用户设置训练参数dict保存在后端的pkl文件中
  327. Args:
  328. tid(str):任务id
  329. train(dict):训练参数
  330. Return:
  331. status
  332. """
  333. data = request.get_json()
  334. if data is None:
  335. data = request.args
  336. if request.method == 'GET':
  337. if 'tid' in data:
  338. from .project.task import get_task_params
  339. ret = get_task_params(data, SD.workspace)
  340. ret['train'] = CustomEncoder().encode(ret['train'])
  341. ret['train'] = json.loads(ret['train'])
  342. return ret
  343. if 'pid' in data:
  344. from .project.task import get_default_params
  345. ret = get_default_params(data, SD.workspace, SD.machine_info)
  346. return ret
  347. if request.method == 'POST':
  348. from .project.task import set_task_params
  349. ret = set_task_params(data, SD.workspace)
  350. return ret
  351. @app.route('/project/task/metrics', methods=['GET'])
  352. def task_metrics():
  353. """
  354. methods=='GET':#获取日志数据
  355. Args:
  356. tid(str):任务id
  357. type(str):可以获取日志的类型,[train,eval,sensitivities,prune],包括训练,评估,敏感度与模型裁剪率关系图,裁剪的日志
  358. Return:
  359. status
  360. if type == 'train':
  361. train_log(dict): 训练日志
  362. elif type == 'eval':
  363. eval_metrics(dict): 评估结果
  364. elif type == 'sensitivities':
  365. sensitivities_loss_img(dict): 敏感度与模型裁剪率关系图
  366. elif type == 'prune':
  367. prune_log(dict):裁剪日志
  368. """
  369. data = request.get_json()
  370. if data is None:
  371. data = request.args
  372. if request.method == 'GET':
  373. if data['type'] == 'train':
  374. from .project.task import get_train_metrics
  375. ret = get_train_metrics(data, SD.workspace)
  376. return ret
  377. if data['type'] == 'eval':
  378. from .project.task import get_eval_metrics
  379. ret = get_eval_metrics(data, SD.workspace)
  380. return ret
  381. if data['type'] == 'eval_all':
  382. from .project.task import get_eval_all_metrics
  383. ret = get_eval_all_metrics(data, SD.workspace)
  384. return ret
  385. if data['type'] == 'sensitivities':
  386. from .project.task import get_sensitivities_loss_img
  387. ret = get_sensitivities_loss_img(data, SD.workspace)
  388. return ret
  389. if data['type'] == 'prune':
  390. from .project.task import get_prune_metrics
  391. ret = get_prune_metrics(data, SD.workspace)
  392. return ret
  393. @app.route('/project/task/train', methods=['POST', 'PUT'])
  394. def task_train():
  395. """
  396. methods=='POST':#异步,启动训练或者裁剪任务
  397. Args:
  398. tid(str):任务id
  399. eval_metric_loss(int,optional):可选,裁剪任务时可用,裁剪任务所需的评估loss
  400. Return:
  401. status
  402. methods=='PUT':#改变任务训练的状态,即终止训练或者恢复训练
  403. Args:
  404. tid(str):任务id
  405. act(str):[stop,resume]暂停或者恢复
  406. epoch(int):(resume下可以设置)恢复训练的起始轮数
  407. Return:
  408. status
  409. """
  410. data = request.get_json()
  411. if request.method == 'POST':
  412. from .project.task import start_train_task
  413. ret = start_train_task(data, SD.workspace, SD.monitored_processes)
  414. return ret
  415. if request.method == 'PUT':
  416. if data['act'] == 'resume':
  417. from .project.task import resume_train_task
  418. ret = resume_train_task(data, SD.workspace, SD.monitored_processes)
  419. return ret
  420. if data['act'] == 'stop':
  421. from .project.task import stop_train_task
  422. ret = stop_train_task(data, SD.workspace)
  423. return ret
  424. @app.route('/project/task/train/file', methods=['GET'])
  425. def log_file():
  426. data = request.get_json()
  427. if request.method == 'GET':
  428. path = data['path']
  429. if not os.path.exists(path):
  430. return {'status': -1}
  431. logs = open(path, encoding='utf-8').readlines()
  432. if len(logs) < 50:
  433. return {'status': 1, 'log': logs}
  434. else:
  435. logs = logs[-50:]
  436. return {'status': 1, 'log': logs}
  437. @app.route('/project/task/prune', methods=['GET', 'POST', 'PUT'])
  438. def task_prune():
  439. """
  440. methods=='GET':#获取裁剪任务的状态
  441. Args:
  442. tid(str):任务id
  443. Return:
  444. prune_status(int): 裁剪任务状态(PruneStatus)枚举变量的值
  445. status
  446. methods=='POST':#异步,创建一个裁剪分析,对于启动裁剪任务前需要先启动裁剪分析
  447. Args:
  448. tid(str):任务id
  449. Return:
  450. status
  451. methods=='PUT':#改变裁剪分析任务的状态
  452. Args:
  453. tid(str):任务id
  454. act(str):[stop],目前仅支持停止一个裁剪分析任务
  455. Return
  456. status
  457. """
  458. data = request.get_json()
  459. if data is None:
  460. data = request.args
  461. if request.method == 'GET':
  462. from .project.task import get_prune_status
  463. ret = get_prune_status(data, SD.workspace)
  464. return ret
  465. if request.method == 'POST':
  466. from .project.task import start_prune_analysis
  467. ret = start_prune_analysis(data, SD.workspace, SD.monitored_processes)
  468. return ret
  469. if request.method == 'PUT':
  470. if data['act'] == 'stop':
  471. from .project.task import stop_prune_analysis
  472. ret = stop_prune_analysis(data, SD.workspace)
  473. return ret
  474. @app.route('/project/task/evaluate', methods=['GET', 'POST'])
  475. def task_evaluate():
  476. '''
  477. methods=='GET':#获取模型评估的结果
  478. Args:
  479. tid(str):任务id
  480. Return:
  481. evaluate_status(int): 任务状态(TaskStatus)枚举变量的值
  482. message(str):描述评估任务的信息
  483. result(dict):如果评估成功,返回评估结果的dict,否则为None
  484. status
  485. methods=='POST':#异步,创建一个评估任务
  486. Args:
  487. tid(str):任务id
  488. epoch(int,optional):需要评估的epoch,如果为None则会评估训练时指标最好的epoch
  489. topk(int,optional):分类任务topk指标,如果为None默认输入为5
  490. score_thresh(float):检测任务类别的score threshhold值,如果为None默认输入为0.5
  491. overlap_thresh(float):实例分割任务IOU threshhold值,如果为None默认输入为0.3
  492. Return:
  493. status
  494. '''
  495. data = request.get_json()
  496. if data is None:
  497. data = request.args
  498. if request.method == 'GET':
  499. from .project.task import get_evaluate_result
  500. ret = get_evaluate_result(data, SD.workspace)
  501. ret['evaluate_status'] = ret['evaluate_status'].value
  502. if 'Confusion_Matrix' in ret['result']:
  503. ret['result']['Confusion_Matrix'] = ret['result'][
  504. 'Confusion_Matrix'].tolist()
  505. ret['result'] = CustomEncoder().encode(ret['result'])
  506. return ret
  507. if request.method == 'POST':
  508. from .project.task import evaluate_model
  509. ret = evaluate_model(data, SD.workspace, SD.monitored_processes)
  510. return ret
  511. @app.route('/project/task/evaluate/file', methods=['GET'])
  512. def task_evaluate_file():
  513. data = request.get_json()
  514. if request.method == 'GET':
  515. ret = data['path']
  516. return send_file(ret)
  517. @app.route('/project/task/predict', methods=['GET', 'POST', 'PUT'])
  518. def task_predict():
  519. '''
  520. methods=='GET':#获取预测状态
  521. Args:
  522. tid(str):任务id
  523. Return:
  524. predict_status(int): 预测任务状态(PredictStatus)枚举变量的值
  525. message(str): 预测信息
  526. status
  527. methods=='POST':#创建预测任务,目前仅支持单张图片的预测
  528. Args:
  529. tid(str):任务id
  530. image_data(str):base64编码的image数据
  531. score_thresh(float,optional):可选,检测任务时有效,检测类别的score threashold值默认是0.5
  532. epoch(int,float,optional):可选,选择需要做预测的ephoch,默认为评估指标最好的那一个epoch
  533. Return:
  534. path(str):服务器上保存预测结果图片的路径
  535. status
  536. '''
  537. data = request.get_json()
  538. if data is None:
  539. data = request.args
  540. if request.method == 'GET':
  541. from .project.task import get_predict_status
  542. ret = get_predict_status(data, SD.workspace)
  543. return ret
  544. if request.method == 'POST':
  545. from .project.task import predict_test_pics
  546. ret = predict_test_pics(data, SD.workspace, SD.monitored_processes)
  547. if 'img_list' in data:
  548. del ret['path']
  549. return ret
  550. return ret
  551. if request.method == 'PUT':
  552. from .project.task import stop_predict_task
  553. ret = stop_predict_task(data, SD.workspace)
  554. return ret
  555. @app.route('/project/task/export', methods=['GET', 'POST', 'PUT'])
  556. def task_export():
  557. '''
  558. methods=='GET':#获取导出模型的状态
  559. Args:
  560. tid(str):任务id
  561. quant(str,optional)可选,[log,result],导出量模型导出状态,若值为log则返回量化的日志;若值为result则返回量化的结果
  562. Return:
  563. status
  564. if quant == 'log':
  565. quant_log(dict):量化日志
  566. if quant == 'result'
  567. quant_result(dict):量化结果
  568. if quant not in Args:
  569. export_status(int):模型导出状态(PredictStatus)枚举变量的值
  570. message(str):模型导出提示信息
  571. methods=='POST':#导出inference模型或者导出lite模型
  572. Args:
  573. tid(str):任务id
  574. type(str):保存模型的类别[infer,lite],支持inference模型导出和lite的模型导出
  575. save_dir(str):保存模型的路径
  576. epoch(str,optional)可选,指定导出的epoch数默认为评估效果最好的epoch
  577. quant(bool,optional)可选,type为infer有效,是否导出量化后的模型,默认为False
  578. model_path(str,optional)可选,type为lite时有效,inference模型的地址
  579. Return:
  580. status
  581. if type == 'infer':
  582. save_dir:模型保存路径
  583. if type == 'lite':
  584. message:模型保存信息
  585. methods=='PUT':#停止导出模型
  586. Args:
  587. tid(str):任务id
  588. Return:
  589. export_status(int):模型导出状态(PredictStatus)枚举变量的值
  590. message(str):停止模型导出提示信息
  591. status
  592. '''
  593. data = request.get_json()
  594. if data is None:
  595. data = request.args
  596. if request.method == 'GET':
  597. if 'quant' in data:
  598. if data['quant'] == 'log':
  599. from .project.task import get_quant_progress
  600. ret = get_quant_progress(data, SD.workspace)
  601. return ret
  602. if data['quant'] == 'result':
  603. from .project.task import get_quant_result
  604. ret = get_quant_result(data, SD.workspace)
  605. return ret
  606. from .project.task import get_export_status
  607. ret = get_export_status(data, SD.workspace)
  608. ret['export_status'] = ret['export_status'].value
  609. return ret
  610. if request.method == 'POST':
  611. if data['type'] == 'infer':
  612. from .project.task import export_infer_model
  613. ret = export_infer_model(data, SD.workspace,
  614. SD.monitored_processes)
  615. return ret
  616. if data['type'] == 'lite':
  617. from .project.task import export_lite_model
  618. ret = export_lite_model(data, SD.workspace)
  619. return ret
  620. if request.method == 'PUT':
  621. from .project.task import stop_export_task
  622. stop_export_task(data, SD.workspace)
  623. return ret
  624. @app.route('/project/task/vdl', methods=['GET'])
  625. def task_vdl():
  626. '''
  627. methods=='GET':#打开某个任务的可视化分析工具(VisualDL)
  628. Args:
  629. tid(str):任务id
  630. Return:
  631. url(str):vdl地址
  632. status
  633. '''
  634. data = request.get_json()
  635. if data is None:
  636. data = request.args
  637. if request.method == 'GET':
  638. from .project.task import open_vdl
  639. ret = open_vdl(data, SD.workspace, SD.current_port,
  640. SD.monitored_processes, SD.running_boards)
  641. return ret
  642. @app.route('/system', methods=['GET', 'DELETE'])
  643. def system():
  644. '''
  645. methods=='GET':#获取系统GPU、CPU信息
  646. Args:
  647. type(str):[machine_info,gpu_memory_size]选择需要获取的系统信息
  648. Return:
  649. status
  650. if type=='machine_info'
  651. info(dict):服务端信息
  652. if type=='gpu_memory_size'
  653. gpu_mem_infos(list):GPU内存信息
  654. '''
  655. data = request.get_json()
  656. if data is None:
  657. data = request.args
  658. if request.method == 'GET':
  659. if data['type'] == 'machine_info':
  660. '''if 'path' not in data:
  661. data['path'] = None
  662. from .system import get_machine_info
  663. ret = get_machine_info(data, SD.machine_info)'''
  664. from .system import get_system_info
  665. ret = get_system_info(SD.machine_info)
  666. return ret
  667. if data['type'] == 'gpu_memory_size':
  668. #from .system import get_gpu_memory_size
  669. from .system import get_gpu_memory_info
  670. ret = get_gpu_memory_info(SD.machine_info)
  671. return ret
  672. if request.method == 'DELETE':
  673. from .system import exit_system
  674. ret = exit_system(SD.monitored_processes)
  675. return ret
  676. @app.route('/demo', methods=['GET', 'POST', 'PUT'])
  677. def demo():
  678. '''
  679. methods=='GET':#获取demo下载进度
  680. Args:
  681. prj_type(int):项目类型ProjectType枚举变量的int值
  682. Return:
  683. status
  684. attr(dict):demo下载信息
  685. methods=='POST':#下载或创建demo工程
  686. Args:
  687. type(str):{download,load}下载或者创建样例
  688. prj_type(int):项目类型ProjectType枚举变量的int值
  689. Return:
  690. status
  691. if type=='load':
  692. did:数据集id
  693. pid:项目id
  694. methods=='PUT':#停止下载或创建demo工程
  695. Args:
  696. prj_type(int):项目类型ProjectType枚举变量的int值
  697. Return:
  698. status
  699. '''
  700. data = request.get_json()
  701. if data is None:
  702. data = request.args
  703. if request.method == 'GET':
  704. from .demo import get_download_demo_progress
  705. ret = get_download_demo_progress(data, SD.workspace)
  706. return ret
  707. if request.method == 'POST':
  708. if data['type'] == 'download':
  709. from .demo import download_demo_dataset
  710. ret = download_demo_dataset(data, SD.workspace,
  711. SD.load_demo_proc_dict)
  712. return ret
  713. if data['type'] == 'load':
  714. from .demo import load_demo_project
  715. ret = load_demo_project(data, SD.workspace, SD.monitored_processes,
  716. SD.load_demo_proj_data_dict,
  717. SD.load_demo_proc_dict)
  718. return ret
  719. if request.method == 'PUT':
  720. from .demo import stop_import_demo
  721. ret = stop_import_demo(data, SD.workspace, SD.load_demo_proc_dict,
  722. SD.load_demo_proj_data_dict)
  723. return ret
  724. @app.route('/model', methods=['GET', 'POST', 'DELETE'])
  725. def model():
  726. '''
  727. methods=='GET':#获取一个或者所有模型的信息
  728. Args:
  729. mid(str,optional)可选,若存在则返回某个模型的信息
  730. type(str,optional)可选,[pretrained,exported].若存在则返回对应类型下所有的模型信息
  731. Return:
  732. status
  733. if mid in Args:
  734. dataset_attr(dict):数据集属性
  735. task_params(dict):模型训练参数
  736. eval_result(dict):模型评估结果
  737. if type in Args and type == 'pretrained':
  738. pretrained_models(list):所有预训练模型信息
  739. if type in Args and type == 'exported':
  740. exported_models(list):所有inference模型的信息
  741. methods=='POST':#创建一个模型
  742. Args:
  743. pid(str):项目id
  744. tid(str):任务id
  745. name(str):模型名字
  746. type(str):创建模型的类型,[pretrained,exported],pretrained代表创建预训练模型、exported代表创建inference或者lite模型
  747. source_path(str):仅type为pretrained时有效,训练好的模型的路径
  748. path(str):仅type为exported时有效,inference或者lite模型的路径
  749. exported_type(int):0为inference模型,1为lite模型
  750. eval_results(dict,optional):可选,仅type为pretrained时有效,模型评估的指标
  751. Return:
  752. status
  753. if type == 'pretrained':
  754. pmid(str):预训练模型id
  755. if type == 'exported':
  756. emid(str):inference模型id
  757. methods=='DELETE':删除一个模型
  758. Args:
  759. type(str):删除模型的类型,[pretrained,exported],pretrained代表创建预训练模型、exported代表创建inference或者lite模型
  760. if type='pretrained':
  761. pmid:预训练模型id
  762. if type='exported':
  763. emid:inference或者lite模型id
  764. Return:
  765. status
  766. '''
  767. data = request.get_json()
  768. if data is None:
  769. data = request.args
  770. if request.method == 'GET':
  771. if 'type' in data:
  772. if data['type'] == 'pretrained':
  773. from .model import list_pretrained_models
  774. ret = list_pretrained_models(SD.workspace)
  775. return ret
  776. if data['type'] == 'exported':
  777. from .model import list_exported_models
  778. ret = list_exported_models(SD.workspace)
  779. return ret
  780. from .model import get_model_details
  781. ret = get_model_details(data, SD.workspace)
  782. ret['eval_result']['Confusion_Matrix'] = ret['eval_result'][
  783. 'Confusion_Matrix'].tolist()
  784. ret['eval_result'] = CustomEncoder().encode(ret['eval_result'])
  785. ret['task_params'] = CustomEncoder().encode(ret['task_params'])
  786. return ret
  787. if request.method == 'POST':
  788. if data['type'] == 'pretrained':
  789. if 'eval_results' in data:
  790. data['eval_results']['Confusion_Matrix'] = np.array(data[
  791. 'eval_results']['Confusion_Matrix'])
  792. from .model import create_pretrained_model
  793. ret = create_pretrained_model(data, SD.workspace,
  794. SD.monitored_processes)
  795. return ret
  796. if data['type'] == 'exported':
  797. from .model import create_exported_model
  798. ret = create_exported_model(data, SD.workspace)
  799. return ret
  800. if request.method == 'DELETE':
  801. if data['type'] == 'pretrained':
  802. from .model import delete_pretrained_model
  803. ret = delete_pretrained_model(data, SD.workspace)
  804. return ret
  805. if data['type'] == 'exported':
  806. from .model import delete_exported_model
  807. ret = delete_exported_model(data, SD.workspace)
  808. return ret
  809. @app.route('/model/file', methods=['GET'])
  810. def model_file():
  811. data = request.get_json()
  812. if request.method == 'GET':
  813. ret = data['path']
  814. return send_file(ret)
  815. def run(port, workspace_dir):
  816. if workspace_dir is None:
  817. user_home = os.path.expanduser('~')
  818. dirname = osp.join(user_home, "paddlex_workspace")
  819. else:
  820. dirname = workspace_dir
  821. if not osp.exists(dirname):
  822. os.makedirs(dirname)
  823. else:
  824. if not osp.isdir(dirname):
  825. os.remove(dirname)
  826. os.makedirs(dirname)
  827. logger = get_logger(osp.join(dirname, "mcessages.log"))
  828. init(dirname, logger)
  829. app.run(host='0.0.0.0', port=port, threaded=True)