| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284 |
- # coding: utf8
- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- from collections import OrderedDict
- import paddle.fluid as fluid
- from .model_utils.libs import scope, name_scope
- from .model_utils.libs import bn, bn_relu, relu
- from .model_utils.libs import conv, max_pool, deconv
- from .model_utils.libs import sigmoid_to_softmax
- from .model_utils.loss import softmax_with_loss
- from .model_utils.loss import dice_loss
- from .model_utils.loss import bce_loss
- class UNet(object):
- """实现Unet模型
- `"U-Net: Convolutional Networks for Biomedical Image Segmentation"
- <https://arxiv.org/abs/1505.04597>`
- Args:
- num_classes (int): 类别数
- mode (str): 网络运行模式,根据mode构建网络的输入和返回。
- 当mode为'train'时,输入为image(-1, 3, -1, -1)和label (-1, 1, -1, -1) 返回loss。
- 当mode为'train'时,输入为image (-1, 3, -1, -1)和label (-1, 1, -1, -1),返回loss,
- pred (与网络输入label 相同大小的预测结果,值代表相应的类别),label,mask(非忽略值的mask,
- 与label相同大小,bool类型)。
- 当mode为'test'时,输入为image(-1, 3, -1, -1)返回pred (-1, 1, -1, -1)和
- logit (-1, num_classes, -1, -1) 通道维上代表每一类的概率值。
- upsample_mode (str): UNet decode时采用的上采样方式,取值为'bilinear'时利用双线行差值进行上菜样,
- 当输入其他选项时则利用反卷积进行上菜样,默认为'bilinear'。
- use_bce_loss (bool): 是否使用bce loss作为网络的损失函数,只能用于两类分割。可与dice loss同时使用。
- use_dice_loss (bool): 是否使用dice loss作为网络的损失函数,只能用于两类分割,可与bce loss同时使用。
- 当use_bce_loss和use_dice_loss都为False时,使用交叉熵损失函数。
- class_weight (list/str): 交叉熵损失函数各类损失的权重。当class_weight为list的时候,长度应为
- num_classes。当class_weight为str时, weight.lower()应为'dynamic',这时会根据每一轮各类像素的比重
- 自行计算相应的权重,每一类的权重为:每类的比例 * num_classes。class_weight取默认值None是,各类的权重1,
- 即平时使用的交叉熵损失函数。
- ignore_index (int): label上忽略的值,label为ignore_index的像素不参与损失函数的计算。
- fixed_input_shape (list): 长度为2,维度为1的list,如:[640,720],用来固定模型输入:'image'的shape,默认为None。
- Raises:
- ValueError: use_bce_loss或use_dice_loss为真且num_calsses > 2。
- ValueError: class_weight为list, 但长度不等于num_class。
- class_weight为str, 但class_weight.low()不等于dynamic。
- TypeError: class_weight不为None时,其类型不是list或str。
- """
- def __init__(self,
- num_classes,
- mode='train',
- upsample_mode='bilinear',
- use_bce_loss=False,
- use_dice_loss=False,
- class_weight=None,
- ignore_index=255,
- fixed_input_shape=None):
- # dice_loss或bce_loss只适用两类分割中
- if num_classes > 2 and (use_bce_loss or use_dice_loss):
- raise Exception(
- "dice loss and bce loss is only applicable to binary classfication"
- )
- if class_weight is not None:
- if isinstance(class_weight, list):
- if len(class_weight) != num_classes:
- raise ValueError(
- "Length of class_weight should be equal to number of classes"
- )
- elif isinstance(class_weight, str):
- if class_weight.lower() != 'dynamic':
- raise ValueError(
- "if class_weight is string, must be dynamic!")
- else:
- raise TypeError(
- 'Expect class_weight is a list or string but receive {}'.
- format(type(class_weight)))
- self.num_classes = num_classes
- self.mode = mode
- self.upsample_mode = upsample_mode
- self.use_bce_loss = use_bce_loss
- self.use_dice_loss = use_dice_loss
- self.class_weight = class_weight
- self.ignore_index = ignore_index
- self.fixed_input_shape = fixed_input_shape
- def _double_conv(self, data, out_ch):
- param_attr = fluid.ParamAttr(
- name='weights',
- regularizer=fluid.regularizer.L2DecayRegularizer(
- regularization_coeff=0.0),
- initializer=fluid.initializer.TruncatedNormal(
- loc=0.0, scale=0.33))
- with scope("conv0"):
- data = bn_relu(
- conv(
- data,
- out_ch,
- 3,
- stride=1,
- padding=1,
- param_attr=param_attr))
- with scope("conv1"):
- data = bn_relu(
- conv(
- data,
- out_ch,
- 3,
- stride=1,
- padding=1,
- param_attr=param_attr))
- return data
- def _down(self, data, out_ch):
- # 下采样:max_pool + 2个卷积
- with scope("down"):
- data = max_pool(data, 2, 2, 0)
- data = self._double_conv(data, out_ch)
- return data
- def _up(self, data, short_cut, out_ch):
- # 上采样:data上采样(resize或deconv), 并与short_cut concat
- param_attr = fluid.ParamAttr(
- name='weights',
- regularizer=fluid.regularizer.L2DecayRegularizer(
- regularization_coeff=0.0),
- initializer=fluid.initializer.XavierInitializer(), )
- with scope("up"):
- if self.upsample_mode == 'bilinear':
- short_cut_shape = fluid.layers.shape(short_cut)
- data = fluid.layers.resize_bilinear(data, short_cut_shape[2:])
- else:
- data = deconv(
- data,
- out_ch // 2,
- filter_size=2,
- stride=2,
- padding=0,
- param_attr=param_attr)
- data = fluid.layers.concat([data, short_cut], axis=1)
- data = self._double_conv(data, out_ch)
- return data
- def _encode(self, data):
- # 编码器设置
- short_cuts = []
- with scope("encode"):
- with scope("block1"):
- data = self._double_conv(data, 64)
- short_cuts.append(data)
- with scope("block2"):
- data = self._down(data, 128)
- short_cuts.append(data)
- with scope("block3"):
- data = self._down(data, 256)
- short_cuts.append(data)
- with scope("block4"):
- data = self._down(data, 512)
- short_cuts.append(data)
- with scope("block5"):
- data = self._down(data, 512)
- return data, short_cuts
- def _decode(self, data, short_cuts):
- # 解码器设置,与编码器对称
- with scope("decode"):
- with scope("decode1"):
- data = self._up(data, short_cuts[3], 256)
- with scope("decode2"):
- data = self._up(data, short_cuts[2], 128)
- with scope("decode3"):
- data = self._up(data, short_cuts[1], 64)
- with scope("decode4"):
- data = self._up(data, short_cuts[0], 64)
- return data
- def _get_logit(self, data, num_classes):
- # 根据类别数设置最后一个卷积层输出
- param_attr = fluid.ParamAttr(
- name='weights',
- regularizer=fluid.regularizer.L2DecayRegularizer(
- regularization_coeff=0.0),
- initializer=fluid.initializer.TruncatedNormal(
- loc=0.0, scale=0.01))
- with scope("logit"):
- data = conv(
- data,
- num_classes,
- 3,
- stride=1,
- padding=1,
- param_attr=param_attr)
- return data
- def _get_loss(self, logit, label, mask):
- avg_loss = 0
- if not (self.use_dice_loss or self.use_bce_loss):
- avg_loss += softmax_with_loss(
- logit,
- label,
- mask,
- num_classes=self.num_classes,
- weight=self.class_weight,
- ignore_index=self.ignore_index)
- else:
- if self.use_dice_loss:
- avg_loss += dice_loss(logit, label, mask)
- if self.use_bce_loss:
- avg_loss += bce_loss(
- logit, label, mask, ignore_index=self.ignore_index)
- return avg_loss
- def generate_inputs(self):
- inputs = OrderedDict()
- if self.fixed_input_shape is not None:
- input_shape = [
- None, 3, self.fixed_input_shape[1], self.fixed_input_shape[0]
- ]
- inputs['image'] = fluid.data(
- dtype='float32', shape=input_shape, name='image')
- else:
- inputs['image'] = fluid.data(
- dtype='float32', shape=[None, 3, None, None], name='image')
- if self.mode == 'train':
- inputs['label'] = fluid.data(
- dtype='int32', shape=[None, 1, None, None], name='label')
- elif self.mode == 'eval':
- inputs['label'] = fluid.data(
- dtype='int32', shape=[None, 1, None, None], name='label')
- return inputs
- def build_net(self, inputs):
- # 在两类分割情况下,当loss函数选择dice_loss或bce_loss的时候,最后logit输出通道数设置为1
- if self.use_dice_loss or self.use_bce_loss:
- self.num_classes = 1
- image = inputs['image']
- encode_data, short_cuts = self._encode(image)
- decode_data = self._decode(encode_data, short_cuts)
- logit = self._get_logit(decode_data, self.num_classes)
- if self.num_classes == 1:
- out = sigmoid_to_softmax(logit)
- out = fluid.layers.transpose(out, [0, 2, 3, 1])
- else:
- out = fluid.layers.transpose(logit, [0, 2, 3, 1])
- pred = fluid.layers.argmax(out, axis=3)
- pred = fluid.layers.unsqueeze(pred, axes=[3])
- if self.mode == 'train':
- label = inputs['label']
- mask = label != self.ignore_index
- return self._get_loss(logit, label, mask)
- elif self.mode == 'eval':
- label = inputs['label']
- mask = label != self.ignore_index
- loss = self._get_loss(logit, label, mask)
- return loss, pred, label, mask
- else:
- if self.num_classes == 1:
- logit = sigmoid_to_softmax(logit)
- else:
- logit = fluid.layers.softmax(logit, axis=1)
- return pred, logit
|