| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186 |
- # coding: utf8
- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from .ops import *
- from .imgaug_support import execute_imgaug
- import random
- import os.path as osp
- import numpy as np
- from PIL import Image
- import cv2
- from collections import OrderedDict
- import paddlex.utils.logging as logging
- class SegTransform:
- """ 分割transform基类
- """
- def __init__(self):
- pass
- class Compose(SegTransform):
- """根据数据预处理/增强算子对输入数据进行操作。
- 所有操作的输入图像流形状均是[H, W, C],其中H为图像高,W为图像宽,C为图像通道数。
- Args:
- transforms (list): 数据预处理/增强算子。
- Raises:
- TypeError: transforms不是list对象
- ValueError: transforms元素个数小于1。
- """
- def __init__(self, transforms):
- if not isinstance(transforms, list):
- raise TypeError('The transforms must be a list!')
- if len(transforms) < 1:
- raise ValueError('The length of transforms ' + \
- 'must be equal or larger than 1!')
- self.transforms = transforms
- self.batch_transforms = None
- self.to_rgb = False
- # 检查transforms里面的操作,目前支持PaddleX定义的或者是imgaug操作
- for op in self.transforms:
- if not isinstance(op, SegTransform):
- import imgaug.augmenters as iaa
- if not isinstance(op, iaa.Augmenter):
- raise Exception(
- "Elements in transforms should be defined in 'paddlex.seg.transforms' or class of imgaug.augmenters.Augmenter, see docs here: https://paddlex.readthedocs.io/zh_CN/latest/apis/transforms/"
- )
- @staticmethod
- def decode_image(im, label):
- if isinstance(im, np.ndarray):
- if len(im.shape) != 3:
- raise Exception(
- "im should be 3-dimensions, but now is {}-dimensions".
- format(len(im.shape)))
- else:
- try:
- im = cv2.imread(im)
- except:
- raise ValueError('Can\'t read The image file {}!'.format(im))
- im = im.astype('float32')
- if label is not None:
- if not isinstance(label, np.ndarray):
- label = np.asarray(Image.open(label))
- return (im, label)
- def __call__(self, im, im_info=None, label=None):
- """
- Args:
- im (str/np.ndarray): 图像路径/图像np.ndarray数据。
- im_info (list): 存储图像reisze或padding前的shape信息,如
- [('resize', [200, 300]), ('padding', [400, 600])]表示
- 图像在过resize前shape为(200, 300), 过padding前shape为
- (400, 600)
- label (str/np.ndarray): 标注图像路径/标注图像np.ndarray数据。
- Returns:
- tuple: 根据网络所需字段所组成的tuple;字段由transforms中的最后一个数据预处理操作决定。
- """
- im, label = self.decode_image(im, label)
- if self.to_rgb:
- im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
- if im_info is None:
- im_info = [('origin_shape', im.shape[0:2])]
- if label is not None:
- origin_label = label.copy()
- for op in self.transforms:
- if isinstance(op, SegTransform):
- outputs = op(im, im_info, label)
- im = outputs[0]
- if len(outputs) >= 2:
- im_info = outputs[1]
- if len(outputs) == 3:
- label = outputs[2]
- else:
- im = execute_imgaug(op, im)
- if label is not None:
- outputs = (im, im_info, label)
- else:
- outputs = (im, im_info)
- if self.transforms[-1].__class__.__name__ == 'ArrangeSegmenter':
- if self.transforms[-1].mode == 'eval':
- if label is not None:
- outputs = (im, im_info, origin_label)
- return outputs
- def add_augmenters(self, augmenters):
- if not isinstance(augmenters, list):
- raise Exception(
- "augmenters should be list type in func add_augmenters()")
- transform_names = [type(x).__name__ for x in self.transforms]
- for aug in augmenters:
- if type(aug).__name__ in transform_names:
- logging.error(
- "{} is already in ComposedTransforms, need to remove it from add_augmenters().".
- format(type(aug).__name__))
- self.transforms = augmenters + self.transforms
- class RandomHorizontalFlip(SegTransform):
- """以一定的概率对图像进行水平翻转。当存在标注图像时,则同步进行翻转。
- Args:
- prob (float): 随机水平翻转的概率。默认值为0.5。
- """
- def __init__(self, prob=0.5):
- self.prob = prob
- def __call__(self, im, im_info=None, label=None):
- """
- Args:
- im (np.ndarray): 图像np.ndarray数据。
- im_info (list): 存储图像reisze或padding前的shape信息,如
- [('resize', [200, 300]), ('padding', [400, 600])]表示
- 图像在过resize前shape为(200, 300), 过padding前shape为
- (400, 600)
- label (np.ndarray): 标注图像np.ndarray数据。
- Returns:
- tuple: 当label为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
- 当label不为空时,返回的tuple为(im, im_info, label),分别对应图像np.ndarray数据、
- 存储与图像相关信息的字典和标注图像np.ndarray数据。
- """
- if random.random() < self.prob:
- im = horizontal_flip(im)
- if label is not None:
- label = horizontal_flip(label)
- if label is None:
- return (im, im_info)
- else:
- return (im, im_info, label)
- class RandomVerticalFlip(SegTransform):
- """以一定的概率对图像进行垂直翻转。当存在标注图像时,则同步进行翻转。
- Args:
- prob (float): 随机垂直翻转的概率。默认值为0.1。
- """
- def __init__(self, prob=0.1):
- self.prob = prob
- def __call__(self, im, im_info=None, label=None):
- """
- Args:
- im (np.ndarray): 图像np.ndarray数据。
- im_info (list): 存储图像reisze或padding前的shape信息,如
- [('resize', [200, 300]), ('padding', [400, 600])]表示
- 图像在过resize前shape为(200, 300), 过padding前shape为
- (400, 600)
- label (np.ndarray): 标注图像np.ndarray数据。
- Returns:
- tuple: 当label为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
- 当label不为空时,返回的tuple为(im, im_info, label),分别对应图像np.ndarray数据、
- 存储与图像相关信息的字典和标注图像np.ndarray数据。
- """
- if random.random() < self.prob:
- im = vertical_flip(im)
- if label is not None:
- label = vertical_flip(label)
- if label is None:
- return (im, im_info)
- else:
- return (im, im_info, label)
- class Resize(SegTransform):
- """调整图像大小(resize),当存在标注图像时,则同步进行处理。
- - 当目标大小(target_size)类型为int时,根据插值方式,
- 将图像resize为[target_size, target_size]。
- - 当目标大小(target_size)类型为list或tuple时,根据插值方式,
- 将图像resize为target_size, target_size的输入应为[w, h]或(w, h)。
- Args:
- target_size (int|list|tuple): 目标大小。
- interp (str): resize的插值方式,与opencv的插值方式对应,
- 可选的值为['NEAREST', 'LINEAR', 'CUBIC', 'AREA', 'LANCZOS4'],默认为"LINEAR"。
- Raises:
- TypeError: target_size不是int/list/tuple。
- ValueError: target_size为list/tuple时元素个数不等于2。
- AssertionError: interp的取值不在['NEAREST', 'LINEAR', 'CUBIC', 'AREA', 'LANCZOS4']之内。
- """
- # The interpolation mode
- interp_dict = {
- 'NEAREST': cv2.INTER_NEAREST,
- 'LINEAR': cv2.INTER_LINEAR,
- 'CUBIC': cv2.INTER_CUBIC,
- 'AREA': cv2.INTER_AREA,
- 'LANCZOS4': cv2.INTER_LANCZOS4
- }
- def __init__(self, target_size, interp='LINEAR'):
- self.interp = interp
- assert interp in self.interp_dict, "interp should be one of {}".format(
- interp_dict.keys())
- if isinstance(target_size, list) or isinstance(target_size, tuple):
- if len(target_size) != 2:
- raise ValueError(
- 'when target is list or tuple, it should include 2 elements, but it is {}'
- .format(target_size))
- elif not isinstance(target_size, int):
- raise TypeError(
- "Type of target_size is invalid. Must be Integer or List or tuple, now is {}"
- .format(type(target_size)))
- self.target_size = target_size
- def __call__(self, im, im_info=None, label=None):
- """
- Args:
- im (np.ndarray): 图像np.ndarray数据。
- im_info (list): 存储图像reisze或padding前的shape信息,如
- [('resize', [200, 300]), ('padding', [400, 600])]表示
- 图像在过resize前shape为(200, 300), 过padding前shape为
- (400, 600)
- label (np.ndarray): 标注图像np.ndarray数据。
- Returns:
- tuple: 当label为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
- 当label不为空时,返回的tuple为(im, im_info, label),分别对应图像np.ndarray数据、
- 存储与图像相关信息的字典和标注图像np.ndarray数据。
- 其中,im_info跟新字段为:
- -shape_before_resize (tuple): 保存resize之前图像的形状(h, w)。
- Raises:
- ZeroDivisionError: im的短边为0。
- TypeError: im不是np.ndarray数据。
- ValueError: im不是3维nd.ndarray。
- """
- if im_info is None:
- im_info = OrderedDict()
- im_info.append(('resize', im.shape[:2]))
- if not isinstance(im, np.ndarray):
- raise TypeError("ResizeImage: image type is not np.ndarray.")
- if len(im.shape) != 3:
- raise ValueError('ResizeImage: image is not 3-dimensional.')
- im_shape = im.shape
- im_size_min = np.min(im_shape[0:2])
- im_size_max = np.max(im_shape[0:2])
- if float(im_size_min) == 0:
- raise ZeroDivisionError('ResizeImage: min size of image is 0')
- if isinstance(self.target_size, int):
- resize_w = self.target_size
- resize_h = self.target_size
- else:
- resize_w = self.target_size[0]
- resize_h = self.target_size[1]
- im_scale_x = float(resize_w) / float(im_shape[1])
- im_scale_y = float(resize_h) / float(im_shape[0])
- im = cv2.resize(
- im,
- None,
- None,
- fx=im_scale_x,
- fy=im_scale_y,
- interpolation=self.interp_dict[self.interp])
- if label is not None:
- label = cv2.resize(
- label,
- None,
- None,
- fx=im_scale_x,
- fy=im_scale_y,
- interpolation=self.interp_dict['NEAREST'])
- if label is None:
- return (im, im_info)
- else:
- return (im, im_info, label)
- class ResizeByLong(SegTransform):
- """对图像长边resize到固定值,短边按比例进行缩放。当存在标注图像时,则同步进行处理。
- Args:
- long_size (int): resize后图像的长边大小。
- """
- def __init__(self, long_size):
- self.long_size = long_size
- def __call__(self, im, im_info=None, label=None):
- """
- Args:
- im (np.ndarray): 图像np.ndarray数据。
- im_info (list): 存储图像reisze或padding前的shape信息,如
- [('resize', [200, 300]), ('padding', [400, 600])]表示
- 图像在过resize前shape为(200, 300), 过padding前shape为
- (400, 600)
- label (np.ndarray): 标注图像np.ndarray数据。
- Returns:
- tuple: 当label为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
- 当label不为空时,返回的tuple为(im, im_info, label),分别对应图像np.ndarray数据、
- 存储与图像相关信息的字典和标注图像np.ndarray数据。
- 其中,im_info新增字段为:
- -shape_before_resize (tuple): 保存resize之前图像的形状(h, w)。
- """
- if im_info is None:
- im_info = OrderedDict()
- im_info.append(('resize', im.shape[:2]))
- im = resize_long(im, self.long_size)
- if label is not None:
- label = resize_long(label, self.long_size, cv2.INTER_NEAREST)
- if label is None:
- return (im, im_info)
- else:
- return (im, im_info, label)
- class ResizeByShort(SegTransform):
- """根据图像的短边调整图像大小(resize)。
- 1. 获取图像的长边和短边长度。
- 2. 根据短边与short_size的比例,计算长边的目标长度,
- 此时高、宽的resize比例为short_size/原图短边长度。
- 3. 如果max_size>0,调整resize比例:
- 如果长边的目标长度>max_size,则高、宽的resize比例为max_size/原图长边长度。
- 4. 根据调整大小的比例对图像进行resize。
- Args:
- target_size (int): 短边目标长度。默认为800。
- max_size (int): 长边目标长度的最大限制。默认为1333。
- Raises:
- TypeError: 形参数据类型不满足需求。
- """
- def __init__(self, short_size=800, max_size=1333):
- self.max_size = int(max_size)
- if not isinstance(short_size, int):
- raise TypeError(
- "Type of short_size is invalid. Must be Integer, now is {}".
- format(type(short_size)))
- self.short_size = short_size
- if not (isinstance(self.max_size, int)):
- raise TypeError("max_size: input type is invalid.")
- def __call__(self, im, im_info=None, label=None):
- """
- Args:
- im (numnp.ndarraypy): 图像np.ndarray数据。
- im_info (list): 存储图像reisze或padding前的shape信息,如
- [('resize', [200, 300]), ('padding', [400, 600])]表示
- 图像在过resize前shape为(200, 300), 过padding前shape为
- (400, 600)
- label (np.ndarray): 标注图像np.ndarray数据。
- Returns:
- tuple: 当label为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
- 当label不为空时,返回的tuple为(im, im_info, label),分别对应图像np.ndarray数据、
- 存储与图像相关信息的字典和标注图像np.ndarray数据。
- 其中,im_info更新字段为:
- -shape_before_resize (tuple): 保存resize之前图像的形状(h, w)。
- Raises:
- TypeError: 形参数据类型不满足需求。
- ValueError: 数据长度不匹配。
- """
- if im_info is None:
- im_info = OrderedDict()
- if not isinstance(im, np.ndarray):
- raise TypeError("ResizeByShort: image type is not numpy.")
- if len(im.shape) != 3:
- raise ValueError('ResizeByShort: image is not 3-dimensional.')
- im_info.append(('resize', im.shape[:2]))
- im_short_size = min(im.shape[0], im.shape[1])
- im_long_size = max(im.shape[0], im.shape[1])
- scale = float(self.short_size) / im_short_size
- if self.max_size > 0 and np.round(scale *
- im_long_size) > self.max_size:
- scale = float(self.max_size) / float(im_long_size)
- resized_width = int(round(im.shape[1] * scale))
- resized_height = int(round(im.shape[0] * scale))
- im = cv2.resize(
- im, (resized_width, resized_height),
- interpolation=cv2.INTER_NEAREST)
- if label is not None:
- im = cv2.resize(
- label, (resized_width, resized_height),
- interpolation=cv2.INTER_NEAREST)
- if label is None:
- return (im, im_info)
- else:
- return (im, im_info, label)
- class ResizeRangeScaling(SegTransform):
- """对图像长边随机resize到指定范围内,短边按比例进行缩放。当存在标注图像时,则同步进行处理。
- Args:
- min_value (int): 图像长边resize后的最小值。默认值400。
- max_value (int): 图像长边resize后的最大值。默认值600。
- Raises:
- ValueError: min_value大于max_value
- """
- def __init__(self, min_value=400, max_value=600):
- if min_value > max_value:
- raise ValueError('min_value must be less than max_value, '
- 'but they are {} and {}.'.format(min_value,
- max_value))
- self.min_value = min_value
- self.max_value = max_value
- def __call__(self, im, im_info=None, label=None):
- """
- Args:
- im (np.ndarray): 图像np.ndarray数据。
- im_info (list): 存储图像reisze或padding前的shape信息,如
- [('resize', [200, 300]), ('padding', [400, 600])]表示
- 图像在过resize前shape为(200, 300), 过padding前shape为
- (400, 600)
- label (np.ndarray): 标注图像np.ndarray数据。
- Returns:
- tuple: 当label为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
- 当label不为空时,返回的tuple为(im, im_info, label),分别对应图像np.ndarray数据、
- 存储与图像相关信息的字典和标注图像np.ndarray数据。
- """
- if self.min_value == self.max_value:
- random_size = self.max_value
- else:
- random_size = int(
- np.random.uniform(self.min_value, self.max_value) + 0.5)
- im = resize_long(im, random_size, cv2.INTER_LINEAR)
- if label is not None:
- label = resize_long(label, random_size, cv2.INTER_NEAREST)
- if label is None:
- return (im, im_info)
- else:
- return (im, im_info, label)
- class ResizeStepScaling(SegTransform):
- """对图像按照某一个比例resize,这个比例以scale_step_size为步长
- 在[min_scale_factor, max_scale_factor]随机变动。当存在标注图像时,则同步进行处理。
- Args:
- min_scale_factor(float), resize最小尺度。默认值0.75。
- max_scale_factor (float), resize最大尺度。默认值1.25。
- scale_step_size (float), resize尺度范围间隔。默认值0.25。
- Raises:
- ValueError: min_scale_factor大于max_scale_factor
- """
- def __init__(self,
- min_scale_factor=0.75,
- max_scale_factor=1.25,
- scale_step_size=0.25):
- if min_scale_factor > max_scale_factor:
- raise ValueError(
- 'min_scale_factor must be less than max_scale_factor, '
- 'but they are {} and {}.'.format(min_scale_factor,
- max_scale_factor))
- self.min_scale_factor = min_scale_factor
- self.max_scale_factor = max_scale_factor
- self.scale_step_size = scale_step_size
- def __call__(self, im, im_info=None, label=None):
- """
- Args:
- im (np.ndarray): 图像np.ndarray数据。
- im_info (list): 存储图像reisze或padding前的shape信息,如
- [('resize', [200, 300]), ('padding', [400, 600])]表示
- 图像在过resize前shape为(200, 300), 过padding前shape为
- (400, 600)
- label (np.ndarray): 标注图像np.ndarray数据。
- Returns:
- tuple: 当label为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
- 当label不为空时,返回的tuple为(im, im_info, label),分别对应图像np.ndarray数据、
- 存储与图像相关信息的字典和标注图像np.ndarray数据。
- """
- if self.min_scale_factor == self.max_scale_factor:
- scale_factor = self.min_scale_factor
- elif self.scale_step_size == 0:
- scale_factor = np.random.uniform(self.min_scale_factor,
- self.max_scale_factor)
- else:
- num_steps = int((self.max_scale_factor - self.min_scale_factor) /
- self.scale_step_size + 1)
- scale_factors = np.linspace(self.min_scale_factor,
- self.max_scale_factor,
- num_steps).tolist()
- np.random.shuffle(scale_factors)
- scale_factor = scale_factors[0]
- im = cv2.resize(
- im, (0, 0),
- fx=scale_factor,
- fy=scale_factor,
- interpolation=cv2.INTER_LINEAR)
- if label is not None:
- label = cv2.resize(
- label, (0, 0),
- fx=scale_factor,
- fy=scale_factor,
- interpolation=cv2.INTER_NEAREST)
- if label is None:
- return (im, im_info)
- else:
- return (im, im_info, label)
- class Normalize(SegTransform):
- """对图像进行标准化。
- 1.尺度缩放到 [0,1]。
- 2.对图像进行减均值除以标准差操作。
- Args:
- mean (list): 图像数据集的均值。默认值[0.5, 0.5, 0.5]。
- std (list): 图像数据集的标准差。默认值[0.5, 0.5, 0.5]。
- Raises:
- ValueError: mean或std不是list对象。std包含0。
- """
- def __init__(self,
- mean=[0.5, 0.5, 0.5],
- std=[0.5, 0.5, 0.5],
- min_val=[0, 0, 0],
- max_val=[255.0, 255.0, 255.0]):
- self.min_val = min_val
- self.max_val = max_val
- self.mean = mean
- self.std = std
- if not (isinstance(self.mean, list) and isinstance(self.std, list)):
- raise ValueError("{}: input type is invalid.".format(self))
- if not (isinstance(self.min_val, list) and isinstance(self.max_val,
- list)):
- raise ValueError("{}: input type is invalid.".format(self))
- from functools import reduce
- if reduce(lambda x, y: x * y, self.std) == 0:
- raise ValueError('{}: std is invalid!'.format(self))
- def __call__(self, im, im_info=None, label=None):
- """
- Args:
- im (np.ndarray): 图像np.ndarray数据。
- im_info (list): 存储图像reisze或padding前的shape信息,如
- [('resize', [200, 300]), ('padding', [400, 600])]表示
- 图像在过resize前shape为(200, 300), 过padding前shape为
- (400, 600)
- label (np.ndarray): 标注图像np.ndarray数据。
- Returns:
- tuple: 当label为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
- 当label不为空时,返回的tuple为(im, im_info, label),分别对应图像np.ndarray数据、
- 存储与图像相关信息的字典和标注图像np.ndarray数据。
- """
- mean = np.array(self.mean)[np.newaxis, np.newaxis, :]
- std = np.array(self.std)[np.newaxis, np.newaxis, :]
- im = normalize(im, mean, std, self.min_val, self.max_val)
- if label is None:
- return (im, im_info)
- else:
- return (im, im_info, label)
- class Padding(SegTransform):
- """对图像或标注图像进行padding,padding方向为右和下。
- 根据提供的值对图像或标注图像进行padding操作。
- Args:
- target_size (int|list|tuple): padding后图像的大小。
- im_padding_value (list): 图像padding的值。默认为[127.5, 127.5, 127.5]。
- label_padding_value (int): 标注图像padding的值。默认值为255。
- Raises:
- TypeError: target_size不是int|list|tuple。
- ValueError: target_size为list|tuple时元素个数不等于2。
- """
- def __init__(self,
- target_size,
- im_padding_value=[127.5, 127.5, 127.5],
- label_padding_value=255):
- if isinstance(target_size, list) or isinstance(target_size, tuple):
- if len(target_size) != 2:
- raise ValueError(
- 'when target is list or tuple, it should include 2 elements, but it is {}'
- .format(target_size))
- elif not isinstance(target_size, int):
- raise TypeError(
- "Type of target_size is invalid. Must be Integer or List or tuple, now is {}"
- .format(type(target_size)))
- self.target_size = target_size
- self.im_padding_value = im_padding_value
- self.label_padding_value = label_padding_value
- def __call__(self, im, im_info=None, label=None):
- """
- Args:
- im (np.ndarray): 图像np.ndarray数据。
- im_info (list): 存储图像reisze或padding前的shape信息,如
- [('resize', [200, 300]), ('padding', [400, 600])]表示
- 图像在过resize前shape为(200, 300), 过padding前shape为
- (400, 600)
- label (np.ndarray): 标注图像np.ndarray数据。
- Returns:
- tuple: 当label为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
- 当label不为空时,返回的tuple为(im, im_info, label),分别对应图像np.ndarray数据、
- 存储与图像相关信息的字典和标注图像np.ndarray数据。
- 其中,im_info新增字段为:
- -shape_before_padding (tuple): 保存padding之前图像的形状(h, w)。
- Raises:
- ValueError: 输入图像im或label的形状大于目标值
- """
- if im_info is None:
- im_info = OrderedDict()
- im_info.append(('padding', im.shape[:2]))
- im_height, im_width = im.shape[0], im.shape[1]
- if isinstance(self.target_size, int):
- target_height = self.target_size
- target_width = self.target_size
- else:
- target_height = self.target_size[1]
- target_width = self.target_size[0]
- pad_height = target_height - im_height
- pad_width = target_width - im_width
- if pad_height < 0 or pad_width < 0:
- raise ValueError(
- 'the size of image should be less than target_size, but the size of image ({}, {}), is larger than target_size ({}, {})'
- .format(im_width, im_height, target_width, target_height))
- else:
- im = cv2.copyMakeBorder(
- im,
- 0,
- pad_height,
- 0,
- pad_width,
- cv2.BORDER_CONSTANT,
- value=self.im_padding_value)
- if label is not None:
- label = cv2.copyMakeBorder(
- label,
- 0,
- pad_height,
- 0,
- pad_width,
- cv2.BORDER_CONSTANT,
- value=self.label_padding_value)
- if label is None:
- return (im, im_info)
- else:
- return (im, im_info, label)
- class RandomPaddingCrop(SegTransform):
- """对图像和标注图进行随机裁剪,当所需要的裁剪尺寸大于原图时,则进行padding操作。
- Args:
- crop_size (int|list|tuple): 裁剪图像大小。默认为512。
- im_padding_value (list): 图像padding的值。默认为[127.5, 127.5, 127.5]。
- label_padding_value (int): 标注图像padding的值。默认值为255。
- Raises:
- TypeError: crop_size不是int/list/tuple。
- ValueError: target_size为list/tuple时元素个数不等于2。
- """
- def __init__(self,
- crop_size=512,
- im_padding_value=[127.5, 127.5, 127.5],
- label_padding_value=255):
- if isinstance(crop_size, list) or isinstance(crop_size, tuple):
- if len(crop_size) != 2:
- raise ValueError(
- 'when crop_size is list or tuple, it should include 2 elements, but it is {}'
- .format(crop_size))
- elif not isinstance(crop_size, int):
- raise TypeError(
- "Type of crop_size is invalid. Must be Integer or List or tuple, now is {}"
- .format(type(crop_size)))
- self.crop_size = crop_size
- self.im_padding_value = im_padding_value
- self.label_padding_value = label_padding_value
- def __call__(self, im, im_info=None, label=None):
- """
- Args:
- im (np.ndarray): 图像np.ndarray数据。
- im_info (list): 存储图像reisze或padding前的shape信息,如
- [('resize', [200, 300]), ('padding', [400, 600])]表示
- 图像在过resize前shape为(200, 300), 过padding前shape为
- (400, 600)
- label (np.ndarray): 标注图像np.ndarray数据。
- Returns:
- tuple: 当label为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
- 当label不为空时,返回的tuple为(im, im_info, label),分别对应图像np.ndarray数据、
- 存储与图像相关信息的字典和标注图像np.ndarray数据。
- """
- if isinstance(self.crop_size, int):
- crop_width = self.crop_size
- crop_height = self.crop_size
- else:
- crop_width = self.crop_size[0]
- crop_height = self.crop_size[1]
- img_height = im.shape[0]
- img_width = im.shape[1]
- if img_height == crop_height and img_width == crop_width:
- if label is None:
- return (im, im_info)
- else:
- return (im, im_info, label)
- else:
- pad_height = max(crop_height - img_height, 0)
- pad_width = max(crop_width - img_width, 0)
- if (pad_height > 0 or pad_width > 0):
- img_channel = im.shape[2]
- import copy
- orig_im = copy.deepcopy(im)
- im = np.zeros((img_height + pad_height, img_width + pad_width,
- img_channel)).astype(orig_im.dtype)
- for i in range(img_channel):
- im[:, :, i] = np.pad(
- orig_im[:, :, i],
- pad_width=((0, pad_height), (0, pad_width)),
- mode='constant',
- constant_values=(self.im_padding_value[i],
- self.im_padding_value[i]))
- if label is not None:
- label = np.pad(label,
- pad_width=((0, pad_height), (0, pad_width)),
- mode='constant',
- constant_values=(self.label_padding_value,
- self.label_padding_value))
- img_height = im.shape[0]
- img_width = im.shape[1]
- if crop_height > 0 and crop_width > 0:
- h_off = np.random.randint(img_height - crop_height + 1)
- w_off = np.random.randint(img_width - crop_width + 1)
- im = im[h_off:(crop_height + h_off), w_off:(w_off + crop_width
- ), :]
- if label is not None:
- label = label[h_off:(crop_height + h_off), w_off:(
- w_off + crop_width)]
- if label is None:
- return (im, im_info)
- else:
- return (im, im_info, label)
- class RandomBlur(SegTransform):
- """以一定的概率对图像进行高斯模糊。
- Args:
- prob (float): 图像模糊概率。默认为0.1。
- """
- def __init__(self, prob=0.1):
- self.prob = prob
- def __call__(self, im, im_info=None, label=None):
- """
- Args:
- im (np.ndarray): 图像np.ndarray数据。
- im_info (list): 存储图像reisze或padding前的shape信息,如
- [('resize', [200, 300]), ('padding', [400, 600])]表示
- 图像在过resize前shape为(200, 300), 过padding前shape为
- (400, 600)
- label (np.ndarray): 标注图像np.ndarray数据。
- Returns:
- tuple: 当label为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
- 当label不为空时,返回的tuple为(im, im_info, label),分别对应图像np.ndarray数据、
- 存储与图像相关信息的字典和标注图像np.ndarray数据。
- """
- if self.prob <= 0:
- n = 0
- elif self.prob >= 1:
- n = 1
- else:
- n = int(1.0 / self.prob)
- if n > 0:
- if np.random.randint(0, n) == 0:
- radius = np.random.randint(3, 10)
- if radius % 2 != 1:
- radius = radius + 1
- if radius > 9:
- radius = 9
- im = cv2.GaussianBlur(im, (radius, radius), 0, 0)
- if label is None:
- return (im, im_info)
- else:
- return (im, im_info, label)
- class RandomRotate(SegTransform):
- """对图像进行随机旋转, 模型训练时的数据增强操作。
- 在旋转区间[-rotate_range, rotate_range]内,对图像进行随机旋转,当存在标注图像时,同步进行,
- 并对旋转后的图像和标注图像进行相应的padding。
- Args:
- rotate_range (float): 最大旋转角度。默认为15度。
- im_padding_value (list): 图像padding的值。默认为[127.5, 127.5, 127.5]。
- label_padding_value (int): 标注图像padding的值。默认为255。
- """
- def __init__(self,
- rotate_range=15,
- im_padding_value=[127.5, 127.5, 127.5],
- label_padding_value=255):
- self.rotate_range = rotate_range
- self.im_padding_value = im_padding_value
- self.label_padding_value = label_padding_value
- def __call__(self, im, im_info=None, label=None):
- """
- Args:
- im (np.ndarray): 图像np.ndarray数据。
- im_info (list): 存储图像reisze或padding前的shape信息,如
- [('resize', [200, 300]), ('padding', [400, 600])]表示
- 图像在过resize前shape为(200, 300), 过padding前shape为
- (400, 600)
- label (np.ndarray): 标注图像np.ndarray数据。
- Returns:
- tuple: 当label为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
- 当label不为空时,返回的tuple为(im, im_info, label),分别对应图像np.ndarray数据、
- 存储与图像相关信息的字典和标注图像np.ndarray数据。
- """
- if self.rotate_range > 0:
- (h, w) = im.shape[:2]
- do_rotation = np.random.uniform(-self.rotate_range,
- self.rotate_range)
- pc = (w // 2, h // 2)
- r = cv2.getRotationMatrix2D(pc, do_rotation, 1.0)
- cos = np.abs(r[0, 0])
- sin = np.abs(r[0, 1])
- nw = int((h * sin) + (w * cos))
- nh = int((h * cos) + (w * sin))
- (cx, cy) = pc
- r[0, 2] += (nw / 2) - cx
- r[1, 2] += (nh / 2) - cy
- dsize = (nw, nh)
- im = cv2.warpAffine(
- im,
- r,
- dsize=dsize,
- flags=cv2.INTER_LINEAR,
- borderMode=cv2.BORDER_CONSTANT,
- borderValue=self.im_padding_value)
- label = cv2.warpAffine(
- label,
- r,
- dsize=dsize,
- flags=cv2.INTER_NEAREST,
- borderMode=cv2.BORDER_CONSTANT,
- borderValue=self.label_padding_value)
- if label is None:
- return (im, im_info)
- else:
- return (im, im_info, label)
- class RandomScaleAspect(SegTransform):
- """裁剪并resize回原始尺寸的图像和标注图像。
- 按照一定的面积比和宽高比对图像进行裁剪,并reszie回原始图像的图像,当存在标注图时,同步进行。
- Args:
- min_scale (float):裁取图像占原始图像的面积比,取值[0,1],为0时则返回原图。默认为0.5。
- aspect_ratio (float): 裁取图像的宽高比范围,非负值,为0时返回原图。默认为0.33。
- """
- def __init__(self, min_scale=0.5, aspect_ratio=0.33):
- self.min_scale = min_scale
- self.aspect_ratio = aspect_ratio
- def __call__(self, im, im_info=None, label=None):
- """
- Args:
- im (np.ndarray): 图像np.ndarray数据。
- im_info (list): 存储图像reisze或padding前的shape信息,如
- [('resize', [200, 300]), ('padding', [400, 600])]表示
- 图像在过resize前shape为(200, 300), 过padding前shape为
- (400, 600)
- label (np.ndarray): 标注图像np.ndarray数据。
- Returns:
- tuple: 当label为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
- 当label不为空时,返回的tuple为(im, im_info, label),分别对应图像np.ndarray数据、
- 存储与图像相关信息的字典和标注图像np.ndarray数据。
- """
- if self.min_scale != 0 and self.aspect_ratio != 0:
- img_height = im.shape[0]
- img_width = im.shape[1]
- for i in range(0, 10):
- area = img_height * img_width
- target_area = area * np.random.uniform(self.min_scale, 1.0)
- aspectRatio = np.random.uniform(self.aspect_ratio,
- 1.0 / self.aspect_ratio)
- dw = int(np.sqrt(target_area * 1.0 * aspectRatio))
- dh = int(np.sqrt(target_area * 1.0 / aspectRatio))
- if (np.random.randint(10) < 5):
- tmp = dw
- dw = dh
- dh = tmp
- if (dh < img_height and dw < img_width):
- h1 = np.random.randint(0, img_height - dh)
- w1 = np.random.randint(0, img_width - dw)
- im = im[h1:(h1 + dh), w1:(w1 + dw), :]
- label = label[h1:(h1 + dh), w1:(w1 + dw)]
- im = cv2.resize(
- im, (img_width, img_height),
- interpolation=cv2.INTER_LINEAR)
- label = cv2.resize(
- label, (img_width, img_height),
- interpolation=cv2.INTER_NEAREST)
- break
- if label is None:
- return (im, im_info)
- else:
- return (im, im_info, label)
- class RandomDistort(SegTransform):
- """对图像进行随机失真。
- 1. 对变换的操作顺序进行随机化操作。
- 2. 按照1中的顺序以一定的概率对图像进行随机像素内容变换。
- Args:
- brightness_range (float): 明亮度因子的范围。默认为0.5。
- brightness_prob (float): 随机调整明亮度的概率。默认为0.5。
- contrast_range (float): 对比度因子的范围。默认为0.5。
- contrast_prob (float): 随机调整对比度的概率。默认为0.5。
- saturation_range (float): 饱和度因子的范围。默认为0.5。
- saturation_prob (float): 随机调整饱和度的概率。默认为0.5。
- hue_range (int): 色调因子的范围。默认为18。
- hue_prob (float): 随机调整色调的概率。默认为0.5。
- """
- def __init__(self,
- brightness_range=0.5,
- brightness_prob=0.5,
- contrast_range=0.5,
- contrast_prob=0.5,
- saturation_range=0.5,
- saturation_prob=0.5,
- hue_range=18,
- hue_prob=0.5):
- self.brightness_range = brightness_range
- self.brightness_prob = brightness_prob
- self.contrast_range = contrast_range
- self.contrast_prob = contrast_prob
- self.saturation_range = saturation_range
- self.saturation_prob = saturation_prob
- self.hue_range = hue_range
- self.hue_prob = hue_prob
- def __call__(self, im, im_info=None, label=None):
- """
- Args:
- im (np.ndarray): 图像np.ndarray数据。
- im_info (list): 存储图像reisze或padding前的shape信息,如
- [('resize', [200, 300]), ('padding', [400, 600])]表示
- 图像在过resize前shape为(200, 300), 过padding前shape为
- (400, 600)
- label (np.ndarray): 标注图像np.ndarray数据。
- Returns:
- tuple: 当label为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
- 当label不为空时,返回的tuple为(im, im_info, label),分别对应图像np.ndarray数据、
- 存储与图像相关信息的字典和标注图像np.ndarray数据。
- """
- brightness_lower = 1 - self.brightness_range
- brightness_upper = 1 + self.brightness_range
- contrast_lower = 1 - self.contrast_range
- contrast_upper = 1 + self.contrast_range
- saturation_lower = 1 - self.saturation_range
- saturation_upper = 1 + self.saturation_range
- hue_lower = -self.hue_range
- hue_upper = self.hue_range
- ops = [brightness, contrast, saturation, hue]
- random.shuffle(ops)
- params_dict = {
- 'brightness': {
- 'brightness_lower': brightness_lower,
- 'brightness_upper': brightness_upper
- },
- 'contrast': {
- 'contrast_lower': contrast_lower,
- 'contrast_upper': contrast_upper
- },
- 'saturation': {
- 'saturation_lower': saturation_lower,
- 'saturation_upper': saturation_upper
- },
- 'hue': {
- 'hue_lower': hue_lower,
- 'hue_upper': hue_upper
- }
- }
- prob_dict = {
- 'brightness': self.brightness_prob,
- 'contrast': self.contrast_prob,
- 'saturation': self.saturation_prob,
- 'hue': self.hue_prob
- }
- for id in range(4):
- params = params_dict[ops[id].__name__]
- prob = prob_dict[ops[id].__name__]
- params['im'] = im
- if np.random.uniform(0, 1) < prob:
- im = ops[id](**params)
- im = im.astype('float32')
- if label is None:
- return (im, im_info)
- else:
- return (im, im_info, label)
- class ArrangeSegmenter(SegTransform):
- """获取训练/验证/预测所需的信息。
- Args:
- mode (str): 指定数据用于何种用途,取值范围为['train', 'eval', 'test', 'quant']。
- Raises:
- ValueError: mode的取值不在['train', 'eval', 'test', 'quant']之内
- """
- def __init__(self, mode):
- if mode not in ['train', 'eval', 'test', 'quant']:
- raise ValueError(
- "mode should be defined as one of ['train', 'eval', 'test', 'quant']!"
- )
- self.mode = mode
- def __call__(self, im, im_info, label=None):
- """
- Args:
- im (np.ndarray): 图像np.ndarray数据。
- im_info (list): 存储图像reisze或padding前的shape信息,如
- [('resize', [200, 300]), ('padding', [400, 600])]表示
- 图像在过resize前shape为(200, 300), 过padding前shape为
- (400, 600)
- label (np.ndarray): 标注图像np.ndarray数据。
- Returns:
- tuple: 当mode为'train'或'eval'时,返回的tuple为(im, label),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
- 当mode为'test'时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;当mode为
- 'quant'时,返回的tuple为(im,),为图像np.ndarray数据。
- """
- im = permute(im, False)
- if self.mode == 'train':
- label = label[np.newaxis, :, :]
- return (im, label)
- if self.mode == 'eval':
- label = label[np.newaxis, :, :]
- return (im, im_info, label)
- elif self.mode == 'test':
- return (im, im_info)
- else:
- return (im, )
- class ComposedSegTransforms(Compose):
- """ 语义分割模型(UNet/DeepLabv3p)的图像处理流程,具体如下
- 训练阶段:
- 1. 随机对图像以0.5的概率水平翻转,若random_horizontal_flip为False,则跳过此步骤
- 2. 按不同的比例随机Resize原图, 处理方式参考[paddlex.seg.transforms.ResizeRangeScaling](#resizerangescaling)。若min_max_size为None,则跳过此步骤
- 3. 从原图中随机crop出大小为train_crop_size大小的子图,如若crop出来的图小于train_crop_size,则会将图padding到对应大小
- 4. 图像归一化
- 预测阶段:
- 1. 将图像的最长边resize至(min_max_size[0] + min_max_size[1])//2, 短边按比例resize。若min_max_size为None,则跳过此步骤
- 2. 图像归一化
- Args:
- mode(str): Transforms所处的阶段,包括`train', 'eval'或'test'
- min_max_size(list): 用于对图像进行resize,具体作用参见上述步骤。
- train_crop_size(list): 训练过程中随机裁剪原图用于训练,具体作用参见上述步骤。此参数仅在mode为`train`时生效。
- mean(list): 图像均值, 默认为[0.485, 0.456, 0.406]。
- std(list): 图像方差,默认为[0.229, 0.224, 0.225]。
- random_horizontal_flip(bool): 数据增强,是否随机水平翻转图像,此参数仅在mode为`train`时生效。
- """
- def __init__(self,
- mode,
- min_max_size=[400, 600],
- train_crop_size=[512, 512],
- mean=[0.5, 0.5, 0.5],
- std=[0.5, 0.5, 0.5],
- random_horizontal_flip=True):
- if mode == 'train':
- # 训练时的transforms,包含数据增强
- if min_max_size is None:
- transforms = [
- RandomPaddingCrop(crop_size=train_crop_size), Normalize(
- mean=mean, std=std)
- ]
- else:
- transforms = [
- ResizeRangeScaling(
- min_value=min(min_max_size),
- max_value=max(min_max_size)),
- RandomPaddingCrop(crop_size=train_crop_size), Normalize(
- mean=mean, std=std)
- ]
- if random_horizontal_flip:
- transforms.insert(0, RandomHorizontalFlip())
- else:
- # 验证/预测时的transforms
- if min_max_size is None:
- transforms = [Normalize(mean=mean, std=std)]
- else:
- long_size = (min(min_max_size) + max(min_max_size)) // 2
- transforms = [
- ResizeByLong(long_size=long_size), Normalize(
- mean=mean, std=std)
- ]
- super(ComposedSegTransforms, self).__init__(transforms)
|