predictor.py 5.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146
  1. # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from typing import Any, Union, Dict, List, Tuple
  15. import numpy as np
  16. import pandas as pd
  17. import os
  18. from ....modules.ts_anomaly_detection.model_list import MODELS
  19. from ...common.batch_sampler import TSBatchSampler
  20. from ...common.reader import ReadTS
  21. from ..common import (
  22. TSCutOff,
  23. BuildTSDataset,
  24. TSNormalize,
  25. TimeFeature,
  26. TStoArray,
  27. TStoBatch,
  28. StaticInfer,
  29. )
  30. from .processors import GetAnomaly
  31. from ..base import BasicPredictor
  32. from .result import TSAdResult
  33. class TSAdPredictor(BasicPredictor):
  34. """TSAdPredictor that inherits from BasicPredictor."""
  35. entities = MODELS
  36. def __init__(self, *args: List, **kwargs: Dict) -> None:
  37. """Initializes TSAdPredictor.
  38. Args:
  39. *args: Arbitrary positional arguments passed to the superclass.
  40. **kwargs: Arbitrary keyword arguments passed to the superclass.
  41. """
  42. super().__init__(*args, **kwargs)
  43. self.preprocessors, self.infer, self.postprocessors = self._build()
  44. def _build_batch_sampler(self) -> TSBatchSampler:
  45. """Builds and returns an ImageBatchSampler instance.
  46. Returns:
  47. ImageBatchSampler: An instance of ImageBatchSampler.
  48. """
  49. return TSBatchSampler()
  50. def _get_result_class(self) -> type:
  51. """Returns the result class, TopkResult.
  52. Returns:
  53. type: The TopkResult class.
  54. """
  55. return TSAdResult
  56. def _build(self) -> Tuple:
  57. """Build the preprocessors, inference engine, and postprocessors based on the configuration.
  58. Returns:
  59. tuple: A tuple containing the preprocessors, inference engine, and postprocessors.
  60. """
  61. preprocessors = {
  62. "ReadTS": ReadTS(),
  63. "TSCutOff": TSCutOff(self.config["size"]),
  64. }
  65. if self.config.get("scale", None):
  66. scaler_file_path = os.path.join(self.model_dir, "scaler.pkl")
  67. if not os.path.exists(scaler_file_path):
  68. raise Exception(f"Cannot find scaler file: {scaler_file_path}")
  69. preprocessors["TSNormalize"] = TSNormalize(
  70. scaler_file_path, self.config["info_params"]
  71. )
  72. preprocessors["BuildTSDataset"] = BuildTSDataset(self.config["info_params"])
  73. if self.config.get("time_feat", None):
  74. preprocessors["TimeFeature"] = TimeFeature(
  75. self.config["info_params"],
  76. self.config["size"],
  77. self.config["holiday"],
  78. )
  79. preprocessors["TStoArray"] = TStoArray(self.config["input_data"])
  80. preprocessors["TStoBatch"] = TStoBatch()
  81. infer = StaticInfer(
  82. model_dir=self.model_dir,
  83. model_prefix=self.MODEL_FILE_PREFIX,
  84. option=self.pp_option,
  85. )
  86. postprocessors = {}
  87. postprocessors["GetAnomaly"] = GetAnomaly(
  88. self.config["model_threshold"], self.config["info_params"]
  89. )
  90. return preprocessors, infer, postprocessors
  91. def process(self, batch_data: List[Union[str, pd.DataFrame]]) -> Dict[str, Any]:
  92. """
  93. Process a batch of data through the preprocessing, inference, and postprocessing.
  94. Args:
  95. batch_data (List[Union[str, pd.DataFrame], ...]): A batch of input data (e.g., image file paths).
  96. Returns:
  97. dict: A dictionary containing the input path, raw image, class IDs, scores, and label names for every instance of the batch. Keys include 'input_path', 'input_img', 'class_ids', 'scores', and 'label_names'.
  98. """
  99. batch_raw_ts = self.preprocessors["ReadTS"](ts_list=batch_data)
  100. batch_cutoff_ts = self.preprocessors["TSCutOff"](ts_list=batch_raw_ts)
  101. if "TSNormalize" in self.preprocessors:
  102. batch_ts = self.preprocessors["TSNormalize"](ts_list=batch_cutoff_ts)
  103. batch_input_ts = self.preprocessors["BuildTSDataset"](ts_list=batch_ts)
  104. else:
  105. batch_input_ts = self.preprocessors["BuildTSDataset"](
  106. ts_list=batch_cutoff_ts
  107. )
  108. if "TimeFeature" in self.preprocessors:
  109. batch_ts = self.preprocessors["TimeFeature"](ts_list=batch_input_ts)
  110. batch_ts = self.preprocessors["TStoArray"](ts_list=batch_ts)
  111. else:
  112. batch_ts = self.preprocessors["TStoArray"](ts_list=batch_input_ts)
  113. x = self.preprocessors["TStoBatch"](ts_list=batch_ts)
  114. batch_preds = self.infer(x=x)
  115. batch_ts_preds = self.postprocessors["GetAnomaly"](
  116. ori_ts_list=batch_input_ts, pred_list=batch_preds
  117. )
  118. return {
  119. "input_path": batch_data,
  120. "input_ts": batch_raw_ts,
  121. "anomaly": batch_ts_preds,
  122. }