pipeline.py 2.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869
  1. # copyright (c) 2025 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from typing import Any, Dict, Optional
  15. import pandas as pd
  16. from ...utils.pp_option import PaddlePredictorOption
  17. from ..base import BasePipeline
  18. # [TODO] 待更新models_new到models
  19. from ...models_new.ts_classification.result import TSClsResult
  20. class TSClsPipeline(BasePipeline):
  21. """TSClsPipeline Pipeline"""
  22. entities = "ts_classification"
  23. def __init__(
  24. self,
  25. config: Dict,
  26. device: str = None,
  27. pp_option: PaddlePredictorOption = None,
  28. use_hpip: bool = False,
  29. hpi_params: Optional[Dict[str, Any]] = None,
  30. ) -> None:
  31. """Initializes the Time Series classification pipeline.
  32. Args:
  33. config (Dict): Configuration dictionary containing various settings.
  34. device (str, optional): Device to run the predictions on. Defaults to None.
  35. pp_option (PaddlePredictorOption, optional): PaddlePredictor options. Defaults to None.
  36. use_hpip (bool, optional): Whether to use high-performance inference (hpip) for prediction. Defaults to False.
  37. hpi_params (Optional[Dict[str, Any]], optional): HPIP parameters. Defaults to None.
  38. """
  39. super().__init__(
  40. device=device, pp_option=pp_option, use_hpip=use_hpip, hpi_params=hpi_params
  41. )
  42. ts_classification_model_config = config["SubModules"]["TSClassification"]
  43. self.ts_classification_model = self.create_model(
  44. ts_classification_model_config
  45. )
  46. def predict(
  47. self, input: str | list[str] | pd.DataFrame | list[pd.DataFrame], **kwargs
  48. ) -> TSClsResult:
  49. """Predicts time series classification results for the given input.
  50. Args:
  51. input (str | list[str] | pd.DataFrame | list[pd.DataFrame]): The input image(s) or path(s) to the images.
  52. **kwargs: Additional keyword arguments that can be passed to the function.
  53. Returns:
  54. TSFcResult: The predicted time series classification results.
  55. """
  56. yield from self.ts_classification_model(input)