train_segmentation.py 1.8 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556
  1. import os
  2. # 选择使用0号卡
  3. os.environ['CUDA_VISIBLE_DEVICES'] = '0'
  4. import paddlex as pdx
  5. from paddlex.seg import transforms
  6. # 下载和解压表盘分割数据集
  7. meter_seg_dataset = 'https://bj.bcebos.com/paddlex/meterreader/datasets/meter_seg.tar.gz'
  8. pdx.utils.download_and_decompress(meter_seg_dataset, path='./')
  9. # 定义训练和验证时的transforms
  10. train_transforms = transforms.Compose([
  11. transforms.Resize([512, 512]),
  12. transforms.RandomHorizontalFlip(prob=0.5),
  13. transforms.Normalize(),
  14. ])
  15. eval_transforms = transforms.Compose([
  16. transforms.Resize([512, 512]),
  17. transforms.Normalize(),
  18. ])
  19. # 定义训练和验证所用的数据集
  20. # API说明: https://paddlex.readthedocs.io/zh_CN/latest/apis/datasets/semantic_segmentation.html#segdataset
  21. train_dataset = pdx.datasets.SegDataset(
  22. data_dir='meter_seg/',
  23. file_list='meter_seg/train.txt',
  24. label_list='meter_seg/labels.txt',
  25. transforms=train_transforms,
  26. shuffle=True)
  27. eval_dataset = pdx.datasets.SegDataset(
  28. data_dir='meter_seg/',
  29. file_list='meter_seg/val.txt',
  30. label_list='meter_seg/labels.txt',
  31. transforms=eval_transforms)
  32. # 初始化模型,并进行训练
  33. # 可使用VisualDL查看训练指标
  34. # VisualDL启动方式: visualdl --logdir output/deeplab/vdl_log --port 8001
  35. # 浏览器打开 https://0.0.0.0:8001即可
  36. # 其中0.0.0.0为本机访问,如为远程服务, 改成相应机器IP
  37. #
  38. # API说明: https://paddlex.readthedocs.io/zh_CN/latest/apis/models/semantic_segmentation.html#deeplabv3p
  39. model = pdx.seg.DeepLabv3p(
  40. num_classes=len(train_dataset.labels),
  41. backbone='Xception65')
  42. model.train(
  43. num_epochs=20,
  44. train_dataset=train_dataset,
  45. train_batch_size=4,
  46. eval_dataset=eval_dataset,
  47. learning_rate=0.1,
  48. pretrain_weights='COCO',
  49. save_interval_epochs=5,
  50. save_dir='output/meter_seg',
  51. use_vdl=True)