| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296 |
- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from threading import Thread
- import multiprocessing
- import collections
- import numpy as np
- import six
- import sys
- import copy
- import random
- import platform
- import chardet
- import paddlex.utils.logging as logging
- class EndSignal():
- pass
- def is_pic(img_name):
- valid_suffix = ['JPEG', 'jpeg', 'JPG', 'jpg', 'BMP', 'bmp', 'PNG', 'png']
- suffix = img_name.split('.')[-1]
- if suffix not in valid_suffix:
- return False
- return True
- def is_valid(sample):
- if sample is None:
- return False
- if isinstance(sample, tuple):
- for s in sample:
- if s is None:
- return False
- elif isinstance(s, np.ndarray) and s.size == 0:
- return False
- elif isinstance(s, collections.abc.Sequence) and len(s) == 0:
- return False
- return True
- def get_encoding(path):
- f = open(path, 'rb')
- data = f.read()
- file_encoding = chardet.detect(data).get('encoding')
- f.close()
- return file_encoding
- def multithread_reader(mapper,
- reader,
- num_workers=4,
- buffer_size=1024,
- batch_size=8,
- drop_last=True):
- from queue import Queue
- end = EndSignal()
- # define a worker to read samples from reader to in_queue
- def read_worker(reader, in_queue):
- for i in reader():
- in_queue.put(i)
- in_queue.put(end)
- # define a worker to handle samples from in_queue by mapper
- # and put mapped samples into out_queue
- def handle_worker(in_queue, out_queue, mapper):
- sample = in_queue.get()
- while not isinstance(sample, EndSignal):
- if len(sample) == 2:
- r = mapper(sample[0], sample[1])
- elif len(sample) == 3:
- r = mapper(sample[0], sample[1], sample[2])
- else:
- raise Exception('The sample\'s length must be 2 or 3.')
- if is_valid(r):
- out_queue.put(r)
- sample = in_queue.get()
- in_queue.put(end)
- out_queue.put(end)
- def xreader():
- in_queue = Queue(buffer_size)
- out_queue = Queue(buffer_size)
- # start a read worker in a thread
- target = read_worker
- t = Thread(target=target, args=(reader, in_queue))
- t.daemon = True
- t.start()
- # start several handle_workers
- target = handle_worker
- args = (in_queue, out_queue, mapper)
- workers = []
- for i in range(num_workers):
- worker = Thread(target=target, args=args)
- worker.daemon = True
- workers.append(worker)
- for w in workers:
- w.start()
- batch_data = []
- sample = out_queue.get()
- while not isinstance(sample, EndSignal):
- batch_data.append(sample)
- if len(batch_data) == batch_size:
- batch_data = generate_minibatch(batch_data)
- yield batch_data
- batch_data = []
- sample = out_queue.get()
- finish = 1
- while finish < num_workers:
- sample = out_queue.get()
- if isinstance(sample, EndSignal):
- finish += 1
- else:
- batch_data.append(sample)
- if len(batch_data) == batch_size:
- batch_data = generate_minibatch(batch_data)
- yield batch_data
- batch_data = []
- if not drop_last and len(batch_data) != 0:
- batch_data = generate_minibatch(batch_data)
- yield batch_data
- batch_data = []
- return xreader
- def multiprocess_reader(mapper,
- reader,
- num_workers=4,
- buffer_size=1024,
- batch_size=8,
- drop_last=True):
- from .shared_queue import SharedQueue as Queue
- def _read_into_queue(samples, mapper, queue):
- end = EndSignal()
- try:
- for sample in samples:
- if sample is None:
- raise ValueError("sample has None")
- if len(sample) == 2:
- result = mapper(sample[0], sample[1])
- elif len(sample) == 3:
- result = mapper(sample[0], sample[1], sample[2])
- else:
- raise Exception('The sample\'s length must be 2 or 3.')
- if is_valid(result):
- queue.put(result)
- queue.put(end)
- except:
- queue.put("")
- six.reraise(*sys.exc_info())
- def queue_reader():
- queue = Queue(buffer_size, memsize=3 * 1024**3)
- total_samples = [[] for i in range(num_workers)]
- for i, sample in enumerate(reader()):
- index = i % num_workers
- total_samples[index].append(sample)
- for i in range(num_workers):
- p = multiprocessing.Process(
- target=_read_into_queue,
- args=(total_samples[i], mapper, queue))
- p.start()
- finish_num = 0
- batch_data = list()
- while finish_num < num_workers:
- sample = queue.get()
- if isinstance(sample, EndSignal):
- finish_num += 1
- elif sample == "":
- raise ValueError("multiprocess reader raises an exception")
- else:
- batch_data.append(sample)
- if len(batch_data) == batch_size:
- batch_data = generate_minibatch(batch_data)
- yield batch_data
- batch_data = []
- if len(batch_data) != 0 and not drop_last:
- batch_data = generate_minibatch(batch_data)
- yield batch_data
- batch_data = []
- return queue_reader
- def generate_minibatch(batch_data, label_padding_value=255):
- # if batch_size is 1, do not pad the image
- if len(batch_data) == 1:
- return batch_data
- width = [data[0].shape[2] for data in batch_data]
- height = [data[0].shape[1] for data in batch_data]
- # if the sizes of images in a mini-batch are equal,
- # do not pad the image
- if len(set(width)) == 1 and len(set(height)) == 1:
- return batch_data
- max_shape = np.array([data[0].shape for data in batch_data]).max(axis=0)
- padding_batch = []
- for data in batch_data:
- # pad the image to a same size
- im_c, im_h, im_w = data[0].shape[:]
- padding_im = np.zeros(
- (im_c, max_shape[1], max_shape[2]), dtype=np.float32)
- padding_im[:, :im_h, :im_w] = data[0]
- if len(data) > 1:
- if isinstance(data[1], np.ndarray):
- # padding the image and label of segmentation
- # during the training and evaluating phase
- padding_label = np.zeros(
- (1, max_shape[1], max_shape[2]
- )).astype('int64') + label_padding_value
- _, label_h, label_w = data[1].shape
- padding_label[:, :label_h, :label_w] = data[1]
- padding_batch.append((padding_im, padding_label))
- elif len(data[1]) == 0 or isinstance(
- data[1][0],
- tuple) and data[1][0][0] in ['resize', 'padding']:
- # padding the image and insert 'padding' into `im_info`
- # of segmentation during the infering phase
- if len(data[1]) == 0 or 'padding' not in [
- data[1][i][0] for i in range(len(data[1]))
- ]:
- data[1].append(('padding', [im_h, im_w]))
- padding_batch.append((padding_im, ) + tuple(data[1:]))
- else:
- # padding the image of detection, or
- # padding the image of classification during the trainging
- # and evaluating phase
- padding_batch.append((padding_im, ) + tuple(data[1:]))
- else:
- # padding the image of classification during the infering phase
- padding_batch.append((padding_im))
- return padding_batch
- class Dataset:
- def __init__(self,
- transforms=None,
- num_workers='auto',
- buffer_size=100,
- parallel_method='process',
- shuffle=False):
- if num_workers == 'auto':
- import multiprocessing as mp
- num_workers = mp.cpu_count() // 2 if mp.cpu_count() // 2 < 8 else 8
- if platform.platform().startswith("Darwin") or platform.platform(
- ).startswith("Windows"):
- parallel_method = 'thread'
- if transforms is None:
- raise Exception("transform should be defined.")
- self.transforms = transforms
- self.num_workers = num_workers
- self.buffer_size = buffer_size
- self.parallel_method = parallel_method
- self.shuffle = shuffle
- def generator(self, batch_size=1, drop_last=True):
- self.batch_size = batch_size
- parallel_reader = multithread_reader
- if self.parallel_method == "process":
- if platform.platform().startswith("Windows"):
- logging.debug(
- "multiprocess_reader is not supported in Windows platform, force to use multithread_reader."
- )
- else:
- parallel_reader = multiprocess_reader
- return parallel_reader(
- self.transforms,
- self.iterator,
- num_workers=self.num_workers,
- buffer_size=self.buffer_size,
- batch_size=batch_size,
- drop_last=drop_last)
- def set_num_samples(self, num_samples):
- if num_samples > len(self.file_list):
- logging.warning(
- "You want set num_samples to {}, but your dataset only has {} samples, so we will keep your dataset num_samples as {}"
- .format(num_samples, len(self.file_list), len(self.file_list)))
- num_samples = len(self.file_list)
- self.num_samples = num_samples
|