| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278 |
- # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- from functools import wraps, partial
- from paddle.inference import Config, create_predictor
- from .....utils import logging
- def register(register_map, key):
- """register the option setting func
- """
- def decorator(func):
- register_map[key] = func
- @wraps(func)
- def wrapper(self, *args, **kwargs):
- return func(self, *args, **kwargs)
- return wrapper
- return decorator
- class PaddleInferenceOption(object):
- """Paddle Inference Engine Option
- """
- SUPPORT_RUN_MODE = ('paddle', 'trt_fp32', 'trt_fp16', 'trt_int8', 'mkldnn',
- 'mkldnn_bf16')
- SUPPORT_DEVICE = ('gpu', 'cpu', 'npu', 'xpu', 'mlu')
- _REGISTER_MAP = {}
- register2self = partial(register, _REGISTER_MAP)
- def __init__(self, **kwargs):
- super().__init__()
- self._cfg = {}
- self._init_option(**kwargs)
- def _init_option(self, **kwargs):
- for k, v in kwargs.items():
- if k not in self._REGISTER_MAP:
- raise Exception(
- f"{k} is not supported to set! The supported option is: \
- {list(self._REGISTER_MAP.keys())}")
- self._REGISTER_MAP.get(k)(self, v)
- for k, v in self._get_default_config().items():
- self._cfg.setdefault(k, v)
- def _get_default_config(cls):
- """ get default config """
- return {
- 'run_mode': 'paddle',
- 'batch_size': 1,
- 'device': 'gpu',
- 'min_subgraph_size': 3,
- 'shape_info_filename': None,
- 'trt_calib_mode': False,
- 'cpu_threads': 1,
- 'trt_use_static': False
- }
- @register2self('run_mode')
- def set_run_mode(self, run_mode: str):
- """set run mode
- """
- if run_mode not in self.SUPPORT_RUN_MODE:
- support_run_mode_str = ", ".join(self.SUPPORT_RUN_MODE)
- raise ValueError(
- f"`run_mode` must be {support_run_mode_str}, but received {repr(run_mode)}."
- )
- self._cfg['run_mode'] = run_mode
- @register2self('batch_size')
- def set_batch_size(self, batch_size: int):
- """set batch size
- """
- if not isinstance(batch_size, int) or batch_size < 1:
- raise Exception()
- self._cfg['batch_size'] = batch_size
- @register2self('device')
- def set_device(self, device: str):
- """set device
- """
- device = device.split(":")[0]
- if device.lower() not in self.SUPPORT_DEVICE:
- support_run_mode_str = ", ".join(self.SUPPORT_DEVICE)
- raise ValueError(
- f"`device` must be {support_run_mode_str}, but received {repr(device)}."
- )
- self._cfg['device'] = device.lower()
- @register2self('min_subgraph_size')
- def set_min_subgraph_size(self, min_subgraph_size: int):
- """set min subgraph size
- """
- if not isinstance(min_subgraph_size, int):
- raise Exception()
- self._cfg['min_subgraph_size'] = min_subgraph_size
- @register2self('shape_info_filename')
- def set_shape_info_filename(self, shape_info_filename: str):
- """set shape info filename
- """
- self._cfg['shape_info_filename'] = shape_info_filename
- @register2self('trt_calib_mode')
- def set_trt_calib_mode(self, trt_calib_mode):
- """set trt calib mode
- """
- self._cfg['trt_calib_mode'] = trt_calib_mode
- @register2self('cpu_threads')
- def set_cpu_threads(self, cpu_threads):
- """set cpu threads
- """
- if not isinstance(cpu_threads, int) or cpu_threads < 1:
- raise Exception()
- self._cfg['cpu_threads'] = cpu_threads
- @register2self('trt_use_static')
- def set_trt_use_static(self, trt_use_static):
- """set trt use static
- """
- self._cfg['trt_use_static'] = trt_use_static
- def get_support_run_mode(self):
- """get supported run mode
- """
- return self.SUPPORT_RUN_MODE
- def get_support_device(self):
- """get supported device
- """
- return self.SUPPORT_DEVICE
- def __str__(self):
- return "\n " + "\n ".join([f"{k}: {v}" for k, v in self._cfg.items()])
- def __getattr__(self, key):
- if key not in self._cfg:
- raise Exception()
- return self._cfg.get(key)
- class _PaddleInferencePredictor(object):
- """ Predictor based on Paddle Inference """
- def __init__(self, param_path, model_path, option, delete_pass=[]):
- super().__init__()
- self.predictor, self.inference_config, self.input_names, self.input_handlers, self.output_handlers = \
- self._create(param_path, model_path, option, delete_pass=delete_pass)
- def _create(self, param_path, model_path, option, delete_pass):
- """ _create """
- if not os.path.exists(model_path) or not os.path.exists(param_path):
- raise FileNotFoundError(
- f"Please ensure {model_path} and {param_path} exist.")
- model_buffer, param_buffer = self._read_model_param(model_path,
- param_path)
- config = Config()
- config.set_model_buffer(model_buffer,
- len(model_buffer), param_buffer,
- len(param_buffer))
- if option.device == 'gpu':
- config.enable_use_gpu(200, 0)
- elif option.device == 'npu':
- config.enable_custom_device('npu')
- elif option.device == 'xpu':
- config.enable_custom_device('npu')
- elif option.device == 'mlu':
- config.enable_custom_device('mlu')
- else:
- assert option.device == 'cpu'
- config.disable_gpu()
- if 'mkldnn' in option.run_mode:
- try:
- config.enable_mkldnn()
- config.set_cpu_math_library_num_threads(option.cpu_threads)
- if 'bf16' in option.run_mode:
- config.enable_mkldnn_bfloat16()
- except Exception as e:
- logging.warning(
- "MKL-DNN is not available. We will disable MKL-DNN.")
- precision_map = {
- 'trt_int8': Config.Precision.Int8,
- 'trt_fp32': Config.Precision.Float32,
- 'trt_fp16': Config.Precision.Half
- }
- if option.run_mode in precision_map.keys():
- config.enable_tensorrt_engine(
- workspace_size=(1 << 25) * option.batch_size,
- max_batch_size=option.batch_size,
- min_subgraph_size=option.min_subgraph_size,
- precision_mode=precision_map[option.run_mode],
- trt_use_static=option.trt_use_static,
- use_calib_mode=option.trt_calib_mode)
- if option.shape_info_filename is not None:
- if not os.path.exists(option.shape_info_filename):
- config.collect_shape_range_info(option.shape_info_filename)
- logging.info(
- f"Dynamic shape info is collected into: {option.shape_info_filename}"
- )
- else:
- logging.info(
- f"A dynamic shape info file ( {option.shape_info_filename} ) already exists. \
- No need to generate again.")
- config.enable_tuned_tensorrt_dynamic_shape(
- option.shape_info_filename, True)
- # Disable paddle inference logging
- config.disable_glog_info()
- for del_p in delete_pass:
- config.delete_pass(del_p)
- # Enable shared memory
- config.enable_memory_optim()
- config.switch_ir_optim(True)
- # Disable feed, fetch OP, needed by zero_copy_run
- config.switch_use_feed_fetch_ops(False)
- predictor = create_predictor(config)
- # Get input and output handlers
- input_names = predictor.get_input_names()
- input_handlers = []
- output_handlers = []
- for input_name in input_names:
- input_handler = predictor.get_input_handle(input_name)
- input_handlers.append(input_handler)
- output_names = predictor.get_output_names()
- for output_name in output_names:
- output_handler = predictor.get_output_handle(output_name)
- output_handlers.append(output_handler)
- return predictor, config, input_names, input_handlers, output_handlers
- def _read_model_param(self, model_path, param_path):
- """ read model and param """
- model_file = open(model_path, 'rb')
- param_file = open(param_path, 'rb')
- model_buffer = model_file.read()
- param_buffer = param_file.read()
- return model_buffer, param_buffer
- def get_input_names(self):
- """ get input names """
- return self.input_names
- def predict(self, x):
- """ predict """
- for idx in range(len(x)):
- self.input_handlers[idx].reshape(x[idx].shape)
- self.input_handlers[idx].copy_from_cpu(x[idx])
- self.predictor.run()
- res = []
- for out_tensor in self.output_handlers:
- out_arr = out_tensor.copy_to_cpu()
- res.append(out_arr)
- return res
|