| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869 |
- # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from ...modules.base import create_model
- from ...modules.text_detection.predictor import transforms as text_det_T
- from .utils import draw_ocr_box_txt
- class OCRPipeline(object):
- """OCR Pipeline
- """
- def __init__(self,
- text_det_model_name,
- text_rec_model_name,
- text_det_model_dir=None,
- text_rec_model_dir=None,
- text_det_kernel_option=None,
- text_rec_kernel_option=None,
- output_dir="output"):
- self.output_dir = output_dir
- text_det_kernel_option = self.get_kernel_option(
- ) if text_det_kernel_option is None else text_det_kernel_option
- text_rec_kernel_option = self.get_kernel_option(
- ) if text_rec_kernel_option is None else text_rec_kernel_option
- text_det_post_transforms = [
- text_det_T.DBPostProcess(
- thresh=0.3,
- box_thresh=0.6,
- max_candidates=1000,
- unclip_ratio=1.5,
- use_dilation=False,
- score_mode='fast',
- box_type='quad'),
- # TODO
- text_det_T.CropByPolys(det_box_type="foo")
- ]
- self.text_det_model = create_model(
- text_det_model_name,
- text_det_model_dir,
- kernel_option=text_det_kernel_option,
- post_transforms=text_det_post_transforms)
- self.text_rec_model = create_model(
- text_rec_model_name,
- text_rec_model_dir,
- kernel_option=text_rec_kernel_option)
- def __call__(self, input_path):
- result = self.text_det_model.predict({"input_path": input_path})
- all_rec_result = []
- for i, img in enumerate(result["sub_imgs"]):
- rec_result = self.text_rec_model.predict({"image": img})
- all_rec_result.append(rec_result["rec_text"][0])
- result["rec_text"] = all_rec_result
- return result
|