| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879 |
- # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import numpy as np
- from ...object_detection import DetPredictor
- from .keys import InstanceSegKeys as K
- from ..model_list import MODELS
- class InstanceSegPredictor(DetPredictor):
- """Instance Seg Predictor"""
- entities = MODELS
- def _run(self, batch_input):
- """run"""
- input_dict = {}
- input_dict["image"] = np.stack(
- [data[K.IMAGE] for data in batch_input], axis=0
- ).astype(dtype=np.float32, copy=False)
- input_dict["scale_factor"] = np.stack(
- [data[K.SCALE_FACTOR][::-1] for data in batch_input], axis=0
- ).astype(dtype=np.float32, copy=False)
- input_dict["im_shape"] = np.stack(
- [data[K.IM_SIZE][::-1] for data in batch_input], axis=0
- ).astype(dtype=np.float32, copy=False)
- input_ = [input_dict[i] for i in self._predictor.get_input_names()]
- pred = batch_input
- box_idx_start = 0
- if self.model_name == "SOLOv2":
- batch_np_boxes_num, batch_np_label, batch_np_score, batch_np_segm = (
- self._predictor.predict(input_)
- )
- for idx in range(len(batch_input)):
- np_boxes_num = batch_np_boxes_num
- box_idx_end = box_idx_start + np_boxes_num
- np_label = batch_np_label[box_idx_start:box_idx_end]
- np_score = batch_np_score[box_idx_start:box_idx_end]
- np_segm = batch_np_segm[box_idx_start:box_idx_end]
- box_idx_start = box_idx_end
- batch_input[idx][K.LABEL] = np_label
- batch_input[idx][K.SCORE] = np_score
- batch_input[idx][K.SEGM] = np_segm
- return pred
- else:
- batch_np_boxes, batch_np_boxes_num, batch_np_masks = (
- self._predictor.predict(input_)
- )
- for idx in range(len(batch_input)):
- np_boxes_num = batch_np_boxes_num[idx]
- box_idx_end = box_idx_start + np_boxes_num
- np_boxes = batch_np_boxes[box_idx_start:box_idx_end]
- np_masks = batch_np_masks[box_idx_start:box_idx_end]
- box_idx_start = box_idx_end
- batch_input[idx][K.BOXES] = np_boxes
- batch_input[idx][K.MASKS] = np_masks
- return pred
- @classmethod
- def get_output_keys(cls):
- """get output keys"""
- return [[K.LABEL, K.SCORE, K.SEGM], [K.BOXES, K.MASKS]]
|