| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349 |
- # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from typing import Any, Dict, List, Optional, Tuple, Union
- import numpy as np
- from ....utils import logging
- from ....utils.deps import pipeline_requires_extra
- from ...common.batch_sampler import ImageBatchSampler
- from ...common.reader import ReadImage
- from ...models.object_detection.result import DetResult
- from ...utils.benchmark import benchmark
- from ...utils.hpi import HPIConfig
- from ...utils.pp_option import PaddlePredictorOption
- from .._parallel import AutoParallelImageSimpleInferencePipeline
- from ..base import BasePipeline
- from ..components import CropByBoxes
- from .result import FormulaRecognitionResult
- @benchmark.time_methods
- class _FormulaRecognitionPipeline(BasePipeline):
- """Formula Recognition Pipeline"""
- def __init__(
- self,
- config: Dict,
- device: str = None,
- pp_option: PaddlePredictorOption = None,
- use_hpip: bool = False,
- hpi_config: Optional[Union[Dict[str, Any], HPIConfig]] = None,
- ) -> None:
- """Initializes the formula recognition pipeline.
- Args:
- config (Dict): Configuration dictionary containing various settings.
- device (str, optional): Device to run the predictions on. Defaults to None.
- pp_option (PaddlePredictorOption, optional): PaddlePredictor options. Defaults to None.
- use_hpip (bool, optional): Whether to use the high-performance
- inference plugin (HPIP) by default. Defaults to False.
- hpi_config (Optional[Union[Dict[str, Any], HPIConfig]], optional):
- The default high-performance inference configuration dictionary.
- Defaults to None.
- """
- super().__init__(
- device=device, pp_option=pp_option, use_hpip=use_hpip, hpi_config=hpi_config
- )
- self.use_doc_preprocessor = config.get("use_doc_preprocessor", True)
- if self.use_doc_preprocessor:
- doc_preprocessor_config = config.get("SubPipelines", {}).get(
- "DocPreprocessor",
- {
- "pipeline_config_error": "config error for doc_preprocessor_pipeline!"
- },
- )
- self.doc_preprocessor_pipeline = self.create_pipeline(
- doc_preprocessor_config
- )
- self.use_layout_detection = config.get("use_layout_detection", True)
- if self.use_layout_detection:
- layout_det_config = config.get("SubModules", {}).get(
- "LayoutDetection",
- {"model_config_error": "config error for layout_det_model!"},
- )
- layout_kwargs = {}
- if (threshold := layout_det_config.get("threshold", None)) is not None:
- layout_kwargs["threshold"] = threshold
- if (layout_nms := layout_det_config.get("layout_nms", None)) is not None:
- layout_kwargs["layout_nms"] = layout_nms
- if (
- layout_unclip_ratio := layout_det_config.get(
- "layout_unclip_ratio", None
- )
- ) is not None:
- layout_kwargs["layout_unclip_ratio"] = layout_unclip_ratio
- if (
- layout_merge_bboxes_mode := layout_det_config.get(
- "layout_merge_bboxes_mode", None
- )
- ) is not None:
- layout_kwargs["layout_merge_bboxes_mode"] = layout_merge_bboxes_mode
- self.layout_det_model = self.create_model(
- layout_det_config, **layout_kwargs
- )
- formula_recognition_config = config.get("SubModules", {}).get(
- "FormulaRecognition",
- {"model_config_error": "config error for formula_rec_model!"},
- )
- self.formula_recognition_model = self.create_model(formula_recognition_config)
- self._crop_by_boxes = CropByBoxes()
- self.batch_sampler = ImageBatchSampler(batch_size=config.get("batch_size", 1))
- self.img_reader = ReadImage(format="BGR")
- def get_model_settings(
- self,
- use_doc_orientation_classify: Optional[bool],
- use_doc_unwarping: Optional[bool],
- use_layout_detection: Optional[bool],
- ) -> dict:
- """
- Get the model settings based on the provided parameters or default values.
- Args:
- use_doc_orientation_classify (Optional[bool]): Whether to use document orientation classification.
- use_doc_unwarping (Optional[bool]): Whether to use document unwarping.
- use_layout_detection (Optional[bool]): Whether to use layout detection.
- Returns:
- dict: A dictionary containing the model settings.
- """
- if use_doc_orientation_classify is None and use_doc_unwarping is None:
- use_doc_preprocessor = self.use_doc_preprocessor
- else:
- if use_doc_orientation_classify is True or use_doc_unwarping is True:
- use_doc_preprocessor = True
- else:
- use_doc_preprocessor = False
- if use_layout_detection is None:
- use_layout_detection = self.use_layout_detection
- return dict(
- use_doc_preprocessor=use_doc_preprocessor,
- use_layout_detection=use_layout_detection,
- )
- def check_model_settings_valid(
- self, model_settings: Dict, layout_det_res: Union[DetResult, List[DetResult]]
- ) -> bool:
- """
- Check if the input parameters are valid based on the initialized models.
- Args:
- model_settings (Dict): A dictionary containing input parameters.
- layout_det_res (Union[DetResult, List[DetResult]]): The layout detection result(s).
- Returns:
- bool: True if all required models are initialized according to input parameters, False otherwise.
- """
- if model_settings["use_doc_preprocessor"] and not self.use_doc_preprocessor:
- logging.error(
- "Set use_doc_preprocessor, but the models for doc preprocessor are not initialized."
- )
- return False
- if model_settings["use_layout_detection"]:
- if layout_det_res is not None:
- logging.error(
- "The layout detection model has already been initialized, please set use_layout_detection=False"
- )
- return False
- if not self.use_layout_detection:
- logging.error(
- "Set use_layout_detection, but the models for layout detection are not initialized."
- )
- return False
- return True
- def predict(
- self,
- input: Union[str, List[str], np.ndarray, List[np.ndarray]],
- use_layout_detection: Optional[bool] = None,
- use_doc_orientation_classify: Optional[bool] = None,
- use_doc_unwarping: Optional[bool] = None,
- layout_det_res: Optional[Union[DetResult, List[DetResult]]] = None,
- layout_threshold: Optional[Union[float, dict]] = None,
- layout_nms: Optional[bool] = None,
- layout_unclip_ratio: Optional[Union[float, Tuple[float, float]]] = None,
- layout_merge_bboxes_mode: Optional[str] = None,
- **kwargs,
- ) -> FormulaRecognitionResult:
- """
- This function predicts the layout parsing result for the given input.
- Args:
- input (Union[str, list[str], np.ndarray, list[np.ndarray]]): The input image(s) of pdf(s) to be processed.
- use_layout_detection (Optional[bool]): Whether to use layout detection.
- use_doc_orientation_classify (Optional[bool]): Whether to use document orientation classification.
- use_doc_unwarping (Optional[bool]): Whether to use document unwarping.
- layout_det_res (Optional[Union[DetResult, List[DetResult]]]): The layout detection result(s).
- It will be used if it is not None and use_layout_detection is False.
- **kwargs: Additional keyword arguments.
- Returns:
- formulaRecognitionResult: The predicted formula recognition result.
- """
- model_settings = self.get_model_settings(
- use_doc_orientation_classify,
- use_doc_unwarping,
- use_layout_detection,
- )
- if not self.check_model_settings_valid(model_settings, layout_det_res):
- yield {"error": "the input params for model settings are invalid!"}
- external_layout_det_results = layout_det_res
- if external_layout_det_results is not None:
- if not isinstance(external_layout_det_results, list):
- external_layout_det_results = [external_layout_det_results]
- external_layout_det_results = iter(external_layout_det_results)
- for _, batch_data in enumerate(self.batch_sampler(input)):
- image_arrays = self.img_reader(batch_data.instances)
- if model_settings["use_doc_preprocessor"]:
- doc_preprocessor_results = list(
- self.doc_preprocessor_pipeline(
- image_arrays,
- use_doc_orientation_classify=use_doc_orientation_classify,
- use_doc_unwarping=use_doc_unwarping,
- )
- )
- else:
- doc_preprocessor_results = [{"output_img": arr} for arr in image_arrays]
- doc_preprocessor_images = [
- item["output_img"] for item in doc_preprocessor_results
- ]
- formula_results = []
- if (
- not model_settings["use_layout_detection"]
- and external_layout_det_results is None
- ):
- layout_det_results = [{} for _ in doc_preprocessor_images]
- formula_rec_results = list(
- self.formula_recognition_model(doc_preprocessor_images)
- )
- for formula_rec_res in formula_rec_results:
- formula_results_for_img = []
- formula_rec_res["formula_region_id"] = 1
- formula_results_for_img.append(formula_rec_res)
- formula_results.append(formula_results_for_img)
- else:
- if model_settings["use_layout_detection"]:
- layout_det_results = list(
- self.layout_det_model(
- doc_preprocessor_images,
- threshold=layout_threshold,
- layout_nms=layout_nms,
- layout_unclip_ratio=layout_unclip_ratio,
- layout_merge_bboxes_mode=layout_merge_bboxes_mode,
- )
- )
- else:
- layout_det_results = []
- for _ in doc_preprocessor_images:
- try:
- layout_det_res = next(external_layout_det_results)
- except StopIteration:
- raise ValueError("No more layout det results")
- layout_det_results.append(layout_det_res)
- formula_crop_imgs = []
- formula_det_results = []
- chunk_indices = [0]
- for doc_preprocessor_image, layout_det_res in zip(
- doc_preprocessor_images, layout_det_results
- ):
- formula_region_id = 1
- for box_info in layout_det_res["boxes"]:
- if box_info["label"].lower() in ["formula"]:
- crop_img_info = self._crop_by_boxes(
- doc_preprocessor_image, [box_info]
- )
- crop_img_info = crop_img_info[0]
- formula_crop_imgs.append(crop_img_info["img"])
- res = {}
- res["formula_region_id"] = formula_region_id
- res["dt_polys"] = box_info["coordinate"]
- formula_det_results.append(res)
- formula_region_id += 1
- chunk_indices.append(len(formula_crop_imgs))
- formula_rec_results = list(
- self.formula_recognition_model(formula_crop_imgs)
- )
- for idx in range(len(chunk_indices) - 1):
- formula_det_results_for_idx = formula_det_results[
- chunk_indices[idx] : chunk_indices[idx + 1]
- ]
- formula_rec_results_for_idx = formula_rec_results[
- chunk_indices[idx] : chunk_indices[idx + 1]
- ]
- for formula_det_res, formula_rec_res in zip(
- formula_det_results_for_idx, formula_rec_results_for_idx
- ):
- formula_region_id = formula_det_res["formula_region_id"]
- dt_polys = formula_det_res["dt_polys"]
- formula_rec_res["formula_region_id"] = formula_region_id
- formula_rec_res["dt_polys"] = dt_polys
- formula_results.append(formula_rec_results_for_idx)
- for (
- input_path,
- page_index,
- layout_det_res,
- doc_preprocessor_res,
- formula_results_for_img,
- ) in zip(
- batch_data.input_paths,
- batch_data.page_indexes,
- layout_det_results,
- doc_preprocessor_results,
- formula_results,
- ):
- single_img_res = {
- "input_path": input_path,
- "page_index": page_index,
- "layout_det_res": layout_det_res,
- "doc_preprocessor_res": doc_preprocessor_res,
- "formula_res_list": formula_results_for_img,
- "model_settings": model_settings,
- }
- yield FormulaRecognitionResult(single_img_res)
- @pipeline_requires_extra("ocr")
- class FormulaRecognitionPipeline(AutoParallelImageSimpleInferencePipeline):
- entities = ["formula_recognition"]
- @property
- def _pipeline_cls(self):
- return _FormulaRecognitionPipeline
- def _get_batch_size(self, config):
- return config.get("batch_size", 1)
|