pipeline.py 3.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293
  1. # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from typing import Any, Dict, List, Optional, Union
  15. import numpy as np
  16. from ....utils.deps import pipeline_requires_extra
  17. from ...models.instance_segmentation.result import InstanceSegResult
  18. from ...utils.benchmark import benchmark
  19. from ...utils.hpi import HPIConfig
  20. from ...utils.pp_option import PaddlePredictorOption
  21. from .._parallel import AutoParallelImageSimpleInferencePipeline
  22. from ..base import BasePipeline
  23. @benchmark.time_methods
  24. class _InstanceSegmentationPipeline(BasePipeline):
  25. """Instance Segmentation Pipeline"""
  26. def __init__(
  27. self,
  28. config: Dict,
  29. device: str = None,
  30. pp_option: PaddlePredictorOption = None,
  31. use_hpip: bool = False,
  32. hpi_config: Optional[Union[Dict[str, Any], HPIConfig]] = None,
  33. ) -> None:
  34. """
  35. Initializes the class with given configurations and options.
  36. Args:
  37. config (Dict): Configuration dictionary containing model and other parameters.
  38. device (str): The device to run the prediction on. Default is None.
  39. pp_option (PaddlePredictorOption): Options for PaddlePaddle predictor. Default is None.
  40. use_hpip (bool, optional): Whether to use the high-performance
  41. inference plugin (HPIP) by default. Defaults to False.
  42. hpi_config (Optional[Union[Dict[str, Any], HPIConfig]], optional):
  43. The default high-performance inference configuration dictionary.
  44. Defaults to None.
  45. """
  46. super().__init__(
  47. device=device, pp_option=pp_option, use_hpip=use_hpip, hpi_config=hpi_config
  48. )
  49. instance_segmentation_model_config = config["SubModules"][
  50. "InstanceSegmentation"
  51. ]
  52. self.instance_segmentation_model = self.create_model(
  53. instance_segmentation_model_config
  54. )
  55. self.threshold = instance_segmentation_model_config["threshold"]
  56. def predict(
  57. self,
  58. input: Union[str, List[str], np.ndarray, List[np.ndarray]],
  59. threshold: Union[float, None] = None,
  60. **kwargs
  61. ) -> InstanceSegResult:
  62. """Predicts instance segmentation results for the given input.
  63. Args:
  64. input (str | list[str] | np.ndarray | list[np.ndarray]): The input image(s) or path(s) to the images.
  65. threshold (Union[float, None]): The threshold value to filter out low-confidence predictions. Default is None.
  66. **kwargs: Additional keyword arguments that can be passed to the function.
  67. Returns:
  68. InstanceSegResult: The predicted instance segmentation results.
  69. """
  70. yield from self.instance_segmentation_model(input, threshold=threshold)
  71. @pipeline_requires_extra("cv")
  72. class InstanceSegmentationPipeline(AutoParallelImageSimpleInferencePipeline):
  73. entities = "instance_segmentation"
  74. @property
  75. def _pipeline_cls(self):
  76. return _InstanceSegmentationPipeline
  77. def _get_batch_size(self, config):
  78. return config["SubModules"]["InstanceSegmentation"].get("batch_size", 1)