| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117 |
- # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from typing import Any, Dict, List, Optional, Tuple, Union
- import numpy as np
- from ....utils.deps import pipeline_requires_extra
- from ...models.object_detection.result import DetResult
- from ...utils.benchmark import benchmark
- from ...utils.hpi import HPIConfig
- from ...utils.pp_option import PaddlePredictorOption
- from .._parallel import AutoParallelImageSimpleInferencePipeline
- from ..base import BasePipeline
- @benchmark.time_methods
- class _ObjectDetectionPipeline(BasePipeline):
- """Object Detection Pipeline"""
- def __init__(
- self,
- config: Dict,
- device: str = None,
- pp_option: PaddlePredictorOption = None,
- use_hpip: bool = False,
- hpi_config: Optional[Union[Dict[str, Any], HPIConfig]] = None,
- ) -> None:
- """
- Initializes the class with given configurations and options.
- Args:
- config (Dict): Configuration dictionary containing model and other parameters.
- device (str): The device to run the prediction on. Default is None.
- pp_option (PaddlePredictorOption): Options for PaddlePaddle predictor. Default is None.
- use_hpip (bool, optional): Whether to use the high-performance
- inference plugin (HPIP) by default. Defaults to False.
- hpi_config (Optional[Union[Dict[str, Any], HPIConfig]], optional):
- The default high-performance inference configuration dictionary.
- Defaults to None.
- """
- super().__init__(
- device=device, pp_option=pp_option, use_hpip=use_hpip, hpi_config=hpi_config
- )
- model_cfg = config["SubModules"]["ObjectDetection"]
- model_kwargs = {}
- if "threshold" in model_cfg:
- model_kwargs["threshold"] = model_cfg["threshold"]
- if "img_size" in model_cfg:
- model_kwargs["img_size"] = model_cfg["img_size"]
- if "layout_nms" in model_cfg:
- model_kwargs["layout_nms"] = model_cfg["layout_nms"]
- if "layout_unclip_ratio" in model_cfg:
- model_kwargs["layout_unclip_ratio"] = model_cfg["layout_unclip_ratio"]
- if "layout_merge_bboxes_mode" in model_cfg:
- model_kwargs["layout_merge_bboxes_mode"] = model_cfg[
- "layout_merge_bboxes_mode"
- ]
- self.det_model = self.create_model(model_cfg, **model_kwargs)
- def predict(
- self,
- input: Union[str, List[str], np.ndarray, List[np.ndarray]],
- threshold: Optional[Union[float, dict]] = None,
- layout_nms: Optional[bool] = None,
- layout_unclip_ratio: Optional[Union[float, Tuple[float, float]]] = None,
- layout_merge_bboxes_mode: Optional[str] = None,
- **kwargs,
- ) -> DetResult:
- """Predicts object detection results for the given input.
- Args:
- input (Union[str, list[str], np.ndarray, list[np.ndarray]]): The input image(s) or path(s) to the images.
- img_size (Optional[Union[int, Tuple[int, int]]]): The size of the input image. Default is None.
- threshold (Optional[float]): The threshold value to filter out low-confidence predictions. Default is None.
- layout_nms (bool, optional): Whether to use layout-aware NMS. Defaults to False.
- layout_unclip_ratio (Optional[Union[float, Tuple[float, float]]], optional): The ratio of unclipping the bounding box.
- Defaults to None.
- If it's a single number, then both width and height are used.
- If it's a tuple of two numbers, then they are used separately for width and height respectively.
- If it's None, then no unclipping will be performed.
- layout_merge_bboxes_mode (Optional[str], optional): The mode for merging bounding boxes. Defaults to None.
- **kwargs: Additional keyword arguments that can be passed to the function.
- Returns:
- DetResult: The predicted detection results.
- """
- yield from self.det_model(
- input,
- threshold=threshold,
- layout_nms=layout_nms,
- layout_unclip_ratio=layout_unclip_ratio,
- layout_merge_bboxes_mode=layout_merge_bboxes_mode,
- **kwargs,
- )
- @pipeline_requires_extra("cv")
- class ObjectDetectionPipeline(AutoParallelImageSimpleInferencePipeline):
- entities = "object_detection"
- @property
- def _pipeline_cls(self):
- return _ObjectDetectionPipeline
- def _get_batch_size(self, config):
- return config["SubModules"]["ObjectDetection"].get("batch_size", 1)
|