| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293 |
- # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import math
- import random
- from typing import Dict
- import numpy as np
- from PIL import Image, ImageDraw
- from ....utils.deps import class_requires_deps, function_requires_deps, is_dep_available
- from ....utils.fonts import SIMFANG_FONT, create_font, create_font_vertical
- from ...common.result import BaseCVResult, JsonMixin
- if is_dep_available("opencv-contrib-python"):
- import cv2
- @class_requires_deps("opencv-contrib-python")
- class OCRResult(BaseCVResult):
- """OCR result"""
- def get_minarea_rect(self, points: np.ndarray) -> np.ndarray:
- """
- Get the minimum area rectangle for the given points using OpenCV.
- Args:
- points (np.ndarray): An array of 2D points.
- Returns:
- np.ndarray: An array of 2D points representing the corners of the minimum area rectangle
- in a specific order (clockwise or counterclockwise starting from the top-left corner).
- """
- bounding_box = cv2.minAreaRect(points)
- points = sorted(list(cv2.boxPoints(bounding_box)), key=lambda x: x[0])
- index_a, index_b, index_c, index_d = 0, 1, 2, 3
- if points[1][1] > points[0][1]:
- index_a = 0
- index_d = 1
- else:
- index_a = 1
- index_d = 0
- if points[3][1] > points[2][1]:
- index_b = 2
- index_c = 3
- else:
- index_b = 3
- index_c = 2
- box = np.array(
- [points[index_a], points[index_b], points[index_c], points[index_d]]
- ).astype(np.int32)
- return box
- def _to_img(self) -> Dict[str, Image.Image]:
- """
- Converts the internal data to a PIL Image with detection and recognition results.
- Returns:
- Dict[Image.Image]: A dictionary containing two images: 'doc_preprocessor_res' and 'ocr_res_img'.
- """
- if "text_word_region" in self:
- boxes = []
- txts = []
- text_word_region = [
- item for sublist in self["text_word_region"] for item in sublist
- ]
- text_word = [item for sublist in self["text_word"] for item in sublist]
- for idx, word_region in enumerate(text_word_region):
- char_box = word_region
- box_height = int(
- math.sqrt(
- (char_box[0][0] - char_box[3][0]) ** 2
- + (char_box[0][1] - char_box[3][1]) ** 2
- )
- )
- box_width = int(
- math.sqrt(
- (char_box[0][0] - char_box[1][0]) ** 2
- + (char_box[0][1] - char_box[1][1]) ** 2
- )
- )
- if box_height == 0 or box_width == 0:
- continue
- boxes.append(word_region)
- txts.append(text_word[idx])
- else:
- boxes = self["rec_polys"]
- txts = self["rec_texts"]
- image = self["doc_preprocessor_res"]["output_img"]
- h, w = image.shape[0:2]
- image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
- img_left = Image.fromarray(image_rgb)
- img_right = np.ones((h, w, 3), dtype=np.uint8) * 255
- random.seed(0)
- draw_left = ImageDraw.Draw(img_left)
- vis_font = SIMFANG_FONT
- if self["vis_fonts"]:
- vis_font = self["vis_fonts"][0]
- for idx, (box, txt) in enumerate(zip(boxes, txts)):
- try:
- color = (
- random.randint(0, 255),
- random.randint(0, 255),
- random.randint(0, 255),
- )
- box = np.array(box)
- if len(box) > 4:
- pts = [(x, y) for x, y in box.tolist()]
- draw_left.polygon(pts, outline=color, width=8, fill=color)
- box = self.get_minarea_rect(box)
- height = int(0.5 * (max(box[:, 1]) - min(box[:, 1])))
- box[:2, 1] = np.mean(box[:, 1])
- box[2:, 1] = np.mean(box[:, 1]) + min(20, height)
- else:
- box_pts = [(int(x), int(y)) for x, y in box.tolist()]
- draw_left.polygon(box_pts, fill=color)
- if isinstance(txt, tuple):
- txt = txt[0]
- img_right_text = draw_box_txt_fine((w, h), box, txt, vis_font.path)
- pts = np.array(box, np.int32).reshape((-1, 1, 2))
- cv2.polylines(img_right_text, [pts], True, color, 1)
- img_right = cv2.bitwise_and(img_right, img_right_text)
- except:
- continue
- img_left = Image.blend(Image.fromarray(image_rgb), img_left, 0.5)
- img_show = Image.new("RGB", (w * 2, h), (255, 255, 255))
- img_show.paste(img_left, (0, 0, w, h))
- img_show.paste(Image.fromarray(img_right), (w, 0, w * 2, h))
- model_settings = self["model_settings"]
- res_img_dict = {f"ocr_res_img": img_show}
- if model_settings["use_doc_preprocessor"]:
- res_img_dict.update(**self["doc_preprocessor_res"].img)
- return res_img_dict
- def _to_str(self, *args, **kwargs) -> Dict[str, str]:
- """Converts the instance's attributes to a dictionary and then to a string.
- Args:
- *args: Additional positional arguments passed to the base class method.
- **kwargs: Additional keyword arguments passed to the base class method.
- Returns:
- Dict[str, str]: A dictionary with the instance's attributes converted to strings.
- """
- data = {}
- data["input_path"] = self["input_path"]
- data["page_index"] = self["page_index"]
- data["model_settings"] = self["model_settings"]
- if self["model_settings"]["use_doc_preprocessor"]:
- data["doc_preprocessor_res"] = self["doc_preprocessor_res"].str["res"]
- data["dt_polys"] = (
- self["dt_polys"]
- if self["text_type"] == "seal"
- else np.array(self["dt_polys"])
- )
- data["text_det_params"] = self["text_det_params"]
- data["text_type"] = self["text_type"]
- if "textline_orientation_angles" in self:
- data["textline_orientation_angles"] = np.array(
- self["textline_orientation_angles"]
- )
- data["text_rec_score_thresh"] = self["text_rec_score_thresh"]
- data["return_word_box"] = self["return_word_box"]
- data["rec_texts"] = self["rec_texts"]
- data["rec_scores"] = np.array(self["rec_scores"])
- data["rec_polys"] = (
- self["rec_polys"]
- if self["text_type"] == "seal"
- else np.array(self["rec_polys"])
- )
- data["rec_boxes"] = np.array(self["rec_boxes"])
- if "text_word_boxes" in self:
- data["text_word_boxes"] = self["text_word_boxes"]
- data["text_word"] = self["text_word"]
- return JsonMixin._to_str(data, *args, **kwargs)
- def _to_json(self, *args, **kwargs) -> Dict[str, str]:
- """
- Converts the object's data to a JSON dictionary.
- Args:
- *args: Positional arguments passed to the JsonMixin._to_json method.
- **kwargs: Keyword arguments passed to the JsonMixin._to_json method.
- Returns:
- Dict[str, str]: A dictionary containing the object's data in JSON format.
- """
- data = {}
- data["input_path"] = self["input_path"]
- data["page_index"] = self["page_index"]
- data["model_settings"] = self["model_settings"]
- if self["model_settings"]["use_doc_preprocessor"]:
- data["doc_preprocessor_res"] = self["doc_preprocessor_res"].json["res"]
- data["dt_polys"] = self["dt_polys"]
- data["text_det_params"] = self["text_det_params"]
- data["text_type"] = self["text_type"]
- if "textline_orientation_angles" in self:
- data["textline_orientation_angles"] = self["textline_orientation_angles"]
- data["text_rec_score_thresh"] = self["text_rec_score_thresh"]
- data["return_word_box"] = self["return_word_box"]
- data["rec_texts"] = self["rec_texts"]
- data["rec_scores"] = self["rec_scores"]
- data["rec_polys"] = self["rec_polys"]
- data["rec_boxes"] = self["rec_boxes"]
- if "text_word_boxes" in self:
- data["text_word_boxes"] = self["text_word_boxes"]
- data["text_word"] = self["text_word"]
- return JsonMixin._to_json(data, *args, **kwargs)
- # Adds a function comment according to Google Style Guide
- @function_requires_deps("opencv-contrib-python")
- def draw_box_txt_fine(
- img_size: tuple, box: np.ndarray, txt: str, font_path: str
- ) -> np.ndarray:
- """
- Draws text in a box on an image with fine control over size and orientation.
- Args:
- img_size (tuple): The size of the output image (width, height).
- box (np.ndarray): A 4x2 numpy array defining the corners of the box in (x, y) order.
- txt (str): The text to draw inside the box.
- font_path (str): The path to the font file to use for drawing the text.
- Returns:
- np.ndarray: An image with the text drawn in the specified box.
- """
- box_height = int(
- math.sqrt(float(box[0][0] - box[3][0]) ** 2 + float(box[0][1] - box[3][1]) ** 2)
- )
- box_width = int(
- math.sqrt(float(box[0][0] - box[1][0]) ** 2 + float(box[0][1] - box[1][1]) ** 2)
- )
- if box_height > 2 * box_width and box_height > 30:
- img_text = Image.new("RGB", (box_width, box_height), (255, 255, 255))
- draw_text = ImageDraw.Draw(img_text)
- if txt:
- font = create_font_vertical(txt, (box_width, box_height), font_path)
- draw_vertical_text(
- draw_text, (0, 0), txt, font, fill=(0, 0, 0), line_spacing=2
- )
- else:
- img_text = Image.new("RGB", (box_width, box_height), (255, 255, 255))
- draw_text = ImageDraw.Draw(img_text)
- if txt:
- font = create_font(txt, (box_width, box_height), font_path)
- draw_text.text([0, 0], txt, fill=(0, 0, 0), font=font)
- pts1 = np.float32(
- [[0, 0], [box_width, 0], [box_width, box_height], [0, box_height]]
- )
- pts2 = np.array(box, dtype=np.float32)
- M = cv2.getPerspectiveTransform(pts1, pts2)
- img_text = np.array(img_text, dtype=np.uint8)
- img_right_text = cv2.warpPerspective(
- img_text,
- M,
- img_size,
- flags=cv2.INTER_NEAREST,
- borderMode=cv2.BORDER_CONSTANT,
- borderValue=(255, 255, 255),
- )
- return img_right_text
- @function_requires_deps("opencv-contrib-python")
- def draw_vertical_text(draw, position, text, font, fill=(0, 0, 0), line_spacing=2):
- x, y = position
- for char in text:
- draw.text((x, y), char, font=font, fill=fill)
- bbox = font.getbbox(char)
- char_height = bbox[3] - bbox[1]
- y += char_height + line_spacing
|