| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475 |
- # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- from pathlib import Path
- from ...utils.misc import abspath
- from ..image_classification import ClsTrainer
- from .model_list import MODELS
- class FaceRecTrainer(ClsTrainer):
- """Face Recognition Model Trainer"""
- entities = MODELS
- def update_config(self):
- """update training config"""
- if self.train_config.log_interval:
- self.pdx_config.update_log_interval(self.train_config.log_interval)
- if self.train_config.eval_interval:
- self.pdx_config.update_eval_interval(self.train_config.eval_interval)
- if self.train_config.save_interval:
- self.pdx_config.update_save_interval(self.train_config.save_interval)
- self.update_dataset_cfg()
- if self.train_config.num_classes is not None:
- self.pdx_config.update_num_classes(self.train_config.num_classes)
- if self.train_config.pretrain_weight_path != "":
- self.pdx_config.update_pretrained_weights(
- self.train_config.pretrain_weight_path
- )
- label_dict_path = Path(self.global_config.dataset_dir).joinpath("label.txt")
- if label_dict_path.exists():
- self.dump_label_dict(label_dict_path)
- if self.train_config.batch_size is not None:
- self.pdx_config.update_batch_size(self.train_config.batch_size)
- if self.train_config.learning_rate is not None:
- self.pdx_config.update_learning_rate(self.train_config.learning_rate)
- if self.train_config.epochs_iters is not None:
- self.pdx_config._update_epochs(self.train_config.epochs_iters)
- if self.train_config.warmup_steps is not None:
- self.pdx_config.update_warmup_epochs(self.train_config.warmup_steps)
- if self.global_config.output is not None:
- self.pdx_config._update_output_dir(self.global_config.output)
- def update_dataset_cfg(self):
- train_dataset_dir = abspath(
- os.path.join(self.global_config.dataset_dir, "train")
- )
- val_dataset_dir = abspath(os.path.join(self.global_config.dataset_dir, "val"))
- train_list_path = abspath(os.path.join(train_dataset_dir, "label.txt"))
- val_list_path = abspath(os.path.join(val_dataset_dir, "pair_label.txt"))
- ds_cfg = [
- f"DataLoader.Train.dataset.name=ClsDataset",
- f"DataLoader.Train.dataset.image_root={train_dataset_dir}",
- f"DataLoader.Train.dataset.cls_label_path={train_list_path}",
- f"DataLoader.Eval.dataset.name=FaceEvalDataset",
- f"DataLoader.Eval.dataset.dataset_root={val_dataset_dir}",
- f"DataLoader.Eval.dataset.pair_label_path={val_list_path}",
- ]
- self.pdx_config.update(ds_cfg)
|