evaluator.py 1.6 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344
  1. # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from ..base import BaseEvaluator
  15. from .model_list import MODELS
  16. class VideoClsEvaluator(BaseEvaluator):
  17. """Image Classification Model Evaluator"""
  18. entities = MODELS
  19. def update_config(self):
  20. """update evaluation config"""
  21. if self.eval_config.log_interval:
  22. self.pdx_config.update_log_interval(self.eval_config.log_interval)
  23. self.pdx_config.update_dataset(
  24. self.global_config.dataset_dir, "VideoClsDataset"
  25. )
  26. if self.eval_config.batch_size is not None:
  27. self.pdx_config.update_batch_size(self.eval_config.batch_size, mode="eval")
  28. self.pdx_config.update_pretrained_weights(self.eval_config.weight_path)
  29. def get_eval_kwargs(self) -> dict:
  30. """get key-value arguments of model evaluation function
  31. Returns:
  32. dict: the arguments of evaluation function.
  33. """
  34. return {
  35. "weight_path": self.eval_config.weight_path,
  36. "device": self.get_device(using_device_number=1),
  37. }