PP-HGNet_small.yaml 3.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170
  1. # global configs
  2. Global:
  3. checkpoints: null
  4. pretrained_model: null
  5. output_dir: ./output/
  6. device: gpu
  7. save_interval: 1
  8. eval_during_train: True
  9. eval_interval: 1
  10. epochs: 100
  11. print_batch_step: 10
  12. use_visualdl: True
  13. # used for static mode and model export
  14. image_shape: [3, 224, 224]
  15. save_inference_dir: ./inference
  16. # training model under @to_static
  17. to_static: False
  18. use_dali: False
  19. # mixed precision training
  20. AMP:
  21. use_amp: False
  22. use_fp16_test: False
  23. scale_loss: 128.0
  24. use_dynamic_loss_scaling: True
  25. use_promote: False
  26. # O1: mixed fp16, O2: pure fp16
  27. level: O1
  28. # model architecture
  29. Arch:
  30. name: PPHGNet_small
  31. class_num: 1000
  32. pretrained: True
  33. # loss function config for traing/eval process
  34. Loss:
  35. Train:
  36. - CELoss:
  37. weight: 1.0
  38. epsilon: 0.1
  39. Eval:
  40. - CELoss:
  41. weight: 1.0
  42. Optimizer:
  43. name: Momentum
  44. momentum: 0.9
  45. lr:
  46. name: Cosine
  47. learning_rate: 0.25
  48. warmup_epoch: 5
  49. regularizer:
  50. name: 'L2'
  51. coeff: 0.00004
  52. # data loader for train and eval
  53. DataLoader:
  54. Train:
  55. dataset:
  56. name: ClsDataset
  57. image_root: ./dataset/ILSVRC2012/
  58. cls_label_path: ./dataset/ILSVRC2012/train_list.txt
  59. transform_ops:
  60. - DecodeImage:
  61. to_rgb: True
  62. channel_first: False
  63. - RandCropImage:
  64. size: 224
  65. interpolation: bicubic
  66. backend: pil
  67. - RandFlipImage:
  68. flip_code: 1
  69. - TimmAutoAugment:
  70. config_str: rand-m7-mstd0.5-inc1
  71. interpolation: bicubic
  72. img_size: 224
  73. - NormalizeImage:
  74. scale: 1.0/255.0
  75. mean: [0.485, 0.456, 0.406]
  76. std: [0.229, 0.224, 0.225]
  77. order: ''
  78. - RandomErasing:
  79. EPSILON: 0.25
  80. sl: 0.02
  81. sh: 1.0/3.0
  82. r1: 0.3
  83. attempt: 10
  84. use_log_aspect: True
  85. mode: pixel
  86. batch_transform_ops:
  87. - OpSampler:
  88. MixupOperator:
  89. alpha: 0.2
  90. prob: 0.5
  91. CutmixOperator:
  92. alpha: 1.0
  93. prob: 0.5
  94. sampler:
  95. name: DistributedBatchSampler
  96. batch_size: 64
  97. drop_last: False
  98. shuffle: True
  99. loader:
  100. num_workers: 4
  101. use_shared_memory: True
  102. Eval:
  103. dataset:
  104. name: ClsDataset
  105. image_root: ./dataset/ILSVRC2012/
  106. cls_label_path: ./dataset/ILSVRC2012/val_list.txt
  107. transform_ops:
  108. - DecodeImage:
  109. to_rgb: True
  110. channel_first: False
  111. - ResizeImage:
  112. resize_short: 236
  113. interpolation: bicubic
  114. backend: pil
  115. - CropImage:
  116. size: 224
  117. - NormalizeImage:
  118. scale: 1.0/255.0
  119. mean: [0.485, 0.456, 0.406]
  120. std: [0.229, 0.224, 0.225]
  121. order: ''
  122. sampler:
  123. name: DistributedBatchSampler
  124. batch_size: 64
  125. drop_last: False
  126. shuffle: False
  127. loader:
  128. num_workers: 4
  129. use_shared_memory: True
  130. Infer:
  131. infer_imgs: docs/images/inference_deployment/whl_demo.jpg
  132. batch_size: 10
  133. transforms:
  134. - DecodeImage:
  135. to_rgb: True
  136. channel_first: False
  137. - ResizeImage:
  138. resize_short: 236
  139. interpolation: bicubic
  140. backend: pil
  141. - CropImage:
  142. size: 224
  143. - NormalizeImage:
  144. scale: 1.0/255.0
  145. mean: [0.485, 0.456, 0.406]
  146. std: [0.229, 0.224, 0.225]
  147. order: ''
  148. - ToCHWImage:
  149. PostProcess:
  150. name: Topk
  151. topk: 5
  152. class_id_map_file: ppcls/utils/imagenet1k_label_list.txt
  153. Metric:
  154. Train:
  155. - TopkAcc:
  156. topk: [1, 5]
  157. Eval:
  158. - TopkAcc:
  159. topk: [1, 5]