| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- from collections import OrderedDict
- import copy
- from paddle import fluid
- from paddle.fluid.param_attr import ParamAttr
- from paddle.fluid.initializer import Xavier
- from paddle.fluid.regularizer import L2Decay
- __all__ = ['FPN', 'HRFPN']
- def ConvNorm(input,
- num_filters,
- filter_size,
- stride=1,
- groups=1,
- norm_decay=0.,
- norm_type='affine_channel',
- norm_groups=32,
- dilation=1,
- lr_scale=1,
- freeze_norm=False,
- act=None,
- norm_name=None,
- initializer=None,
- name=None):
- fan = num_filters
- conv = fluid.layers.conv2d(
- input=input,
- num_filters=num_filters,
- filter_size=filter_size,
- stride=stride,
- padding=((filter_size - 1) // 2) * dilation,
- dilation=dilation,
- groups=groups,
- act=None,
- param_attr=ParamAttr(
- name=name + "_weights",
- initializer=initializer,
- learning_rate=lr_scale),
- bias_attr=False,
- name=name + '.conv2d.output.1')
- norm_lr = 0. if freeze_norm else 1.
- pattr = ParamAttr(
- name=norm_name + '_scale',
- learning_rate=norm_lr * lr_scale,
- regularizer=L2Decay(norm_decay))
- battr = ParamAttr(
- name=norm_name + '_offset',
- learning_rate=norm_lr * lr_scale,
- regularizer=L2Decay(norm_decay))
- if norm_type in ['bn', 'sync_bn']:
- global_stats = True if freeze_norm else False
- out = fluid.layers.batch_norm(
- input=conv,
- act=act,
- name=norm_name + '.output.1',
- param_attr=pattr,
- bias_attr=battr,
- moving_mean_name=norm_name + '_mean',
- moving_variance_name=norm_name + '_variance',
- use_global_stats=global_stats)
- scale = fluid.framework._get_var(pattr.name)
- bias = fluid.framework._get_var(battr.name)
- elif norm_type == 'gn':
- out = fluid.layers.group_norm(
- input=conv,
- act=act,
- name=norm_name + '.output.1',
- groups=norm_groups,
- param_attr=pattr,
- bias_attr=battr)
- scale = fluid.framework._get_var(pattr.name)
- bias = fluid.framework._get_var(battr.name)
- elif norm_type == 'affine_channel':
- scale = fluid.layers.create_parameter(
- shape=[conv.shape[1]],
- dtype=conv.dtype,
- attr=pattr,
- default_initializer=fluid.initializer.Constant(1.))
- bias = fluid.layers.create_parameter(
- shape=[conv.shape[1]],
- dtype=conv.dtype,
- attr=battr,
- default_initializer=fluid.initializer.Constant(0.))
- out = fluid.layers.affine_channel(
- x=conv, scale=scale, bias=bias, act=act)
- if freeze_norm:
- scale.stop_gradient = True
- bias.stop_gradient = True
- return out
- class FPN(object):
- """
- Feature Pyramid Network, see https://arxiv.org/abs/1612.03144
- Args:
- num_chan (int): number of feature channels
- min_level (int): lowest level of the backbone feature map to use
- max_level (int): highest level of the backbone feature map to use
- spatial_scale (list): feature map scaling factor
- has_extra_convs (bool): whether has extral convolutions in higher levels
- norm_type (str|None): normalization type, 'bn'/'sync_bn'/'affine_channel'
- """
- def __init__(self,
- num_chan=256,
- min_level=2,
- max_level=6,
- spatial_scale=[1. / 32., 1. / 16., 1. / 8., 1. / 4.],
- has_extra_convs=False,
- norm_type=None,
- freeze_norm=False):
- self.freeze_norm = freeze_norm
- self.num_chan = num_chan
- self.min_level = min_level
- self.max_level = max_level
- self.spatial_scale = spatial_scale
- self.has_extra_convs = has_extra_convs
- self.norm_type = norm_type
- def _add_topdown_lateral(self, body_name, body_input, upper_output):
- lateral_name = 'fpn_inner_' + body_name + '_lateral'
- topdown_name = 'fpn_topdown_' + body_name
- fan = body_input.shape[1]
- if self.norm_type:
- initializer = Xavier(fan_out=fan)
- lateral = ConvNorm(
- body_input,
- self.num_chan,
- 1,
- initializer=initializer,
- norm_type=self.norm_type,
- freeze_norm=self.freeze_norm,
- name=lateral_name,
- norm_name=lateral_name)
- else:
- lateral = fluid.layers.conv2d(
- body_input,
- self.num_chan,
- 1,
- param_attr=ParamAttr(
- name=lateral_name + "_w", initializer=Xavier(fan_out=fan)),
- bias_attr=ParamAttr(
- name=lateral_name + "_b",
- learning_rate=2.,
- regularizer=L2Decay(0.)),
- name=lateral_name)
- topdown = fluid.layers.resize_nearest(
- upper_output, scale=2., name=topdown_name)
- return lateral + topdown
- def get_output(self, body_dict):
- """
- Add FPN onto backbone.
- Args:
- body_dict(OrderedDict): Dictionary of variables and each element is the
- output of backbone.
- Return:
- fpn_dict(OrderedDict): A dictionary represents the output of FPN with
- their name.
- spatial_scale(list): A list of multiplicative spatial scale factor.
- """
- spatial_scale = copy.deepcopy(self.spatial_scale)
- body_name_list = list(body_dict.keys())[::-1]
- num_backbone_stages = len(body_name_list)
- self.fpn_inner_output = [[] for _ in range(num_backbone_stages)]
- fpn_inner_name = 'fpn_inner_' + body_name_list[0]
- body_input = body_dict[body_name_list[0]]
- fan = body_input.shape[1]
- if self.norm_type:
- initializer = Xavier(fan_out=fan)
- self.fpn_inner_output[0] = ConvNorm(
- body_input,
- self.num_chan,
- 1,
- initializer=initializer,
- norm_type=self.norm_type,
- freeze_norm=self.freeze_norm,
- name=fpn_inner_name,
- norm_name=fpn_inner_name)
- else:
- self.fpn_inner_output[0] = fluid.layers.conv2d(
- body_input,
- self.num_chan,
- 1,
- param_attr=ParamAttr(
- name=fpn_inner_name + "_w",
- initializer=Xavier(fan_out=fan)),
- bias_attr=ParamAttr(
- name=fpn_inner_name + "_b",
- learning_rate=2.,
- regularizer=L2Decay(0.)),
- name=fpn_inner_name)
- for i in range(1, num_backbone_stages):
- body_name = body_name_list[i]
- body_input = body_dict[body_name]
- top_output = self.fpn_inner_output[i - 1]
- fpn_inner_single = self._add_topdown_lateral(body_name, body_input,
- top_output)
- self.fpn_inner_output[i] = fpn_inner_single
- fpn_dict = {}
- fpn_name_list = []
- for i in range(num_backbone_stages):
- fpn_name = 'fpn_' + body_name_list[i]
- fan = self.fpn_inner_output[i].shape[1] * 3 * 3
- if self.norm_type:
- initializer = Xavier(fan_out=fan)
- fpn_output = ConvNorm(
- self.fpn_inner_output[i],
- self.num_chan,
- 3,
- initializer=initializer,
- norm_type=self.norm_type,
- freeze_norm=self.freeze_norm,
- name=fpn_name,
- norm_name=fpn_name)
- else:
- fpn_output = fluid.layers.conv2d(
- self.fpn_inner_output[i],
- self.num_chan,
- filter_size=3,
- padding=1,
- param_attr=ParamAttr(
- name=fpn_name + "_w", initializer=Xavier(fan_out=fan)),
- bias_attr=ParamAttr(
- name=fpn_name + "_b",
- learning_rate=2.,
- regularizer=L2Decay(0.)),
- name=fpn_name)
- fpn_dict[fpn_name] = fpn_output
- fpn_name_list.append(fpn_name)
- if not self.has_extra_convs and self.max_level - self.min_level == len(
- spatial_scale):
- body_top_name = fpn_name_list[0]
- body_top_extension = fluid.layers.pool2d(
- fpn_dict[body_top_name],
- 1,
- 'max',
- pool_stride=2,
- name=body_top_name + '_subsampled_2x')
- fpn_dict[body_top_name + '_subsampled_2x'] = body_top_extension
- fpn_name_list.insert(0, body_top_name + '_subsampled_2x')
- spatial_scale.insert(0, spatial_scale[0] * 0.5)
- # Coarser FPN levels introduced for RetinaNet
- highest_backbone_level = self.min_level + len(spatial_scale) - 1
- if self.has_extra_convs and self.max_level > highest_backbone_level:
- fpn_blob = body_dict[body_name_list[0]]
- for i in range(highest_backbone_level + 1, self.max_level + 1):
- fpn_blob_in = fpn_blob
- fpn_name = 'fpn_' + str(i)
- if i > highest_backbone_level + 1:
- fpn_blob_in = fluid.layers.relu(fpn_blob)
- fan = fpn_blob_in.shape[1] * 3 * 3
- fpn_blob = fluid.layers.conv2d(
- input=fpn_blob_in,
- num_filters=self.num_chan,
- filter_size=3,
- stride=2,
- padding=1,
- param_attr=ParamAttr(
- name=fpn_name + "_w", initializer=Xavier(fan_out=fan)),
- bias_attr=ParamAttr(
- name=fpn_name + "_b",
- learning_rate=2.,
- regularizer=L2Decay(0.)),
- name=fpn_name)
- fpn_dict[fpn_name] = fpn_blob
- fpn_name_list.insert(0, fpn_name)
- spatial_scale.insert(0, spatial_scale[0] * 0.5)
- res_dict = OrderedDict([(k, fpn_dict[k]) for k in fpn_name_list])
- return res_dict, spatial_scale
- class HRFPN(object):
- """
- HRNet, see https://arxiv.org/abs/1908.07919
- Args:
- num_chan (int): number of feature channels
- pooling_type (str): pooling type of downsampling
- share_conv (bool): whethet to share conv for different layers' reduction
- spatial_scale (list): feature map scaling factor
- """
- def __init__(
- self,
- num_chan=256,
- pooling_type="avg",
- share_conv=False,
- spatial_scale=[1. / 64, 1. / 32, 1. / 16, 1. / 8, 1. / 4], ):
- self.num_chan = num_chan
- self.pooling_type = pooling_type
- self.share_conv = share_conv
- self.spatial_scale = spatial_scale
- def get_output(self, body_dict):
- num_out = len(self.spatial_scale)
- body_name_list = list(body_dict.keys())
- num_backbone_stages = len(body_name_list)
- outs = []
- outs.append(body_dict[body_name_list[0]])
- # resize
- for i in range(1, len(body_dict)):
- resized = self.resize_input_tensor(body_dict[body_name_list[i]],
- outs[0], 2**i)
- outs.append(resized)
- # concat
- out = fluid.layers.concat(outs, axis=1)
- # reduction
- out = fluid.layers.conv2d(
- input=out,
- num_filters=self.num_chan,
- filter_size=1,
- stride=1,
- padding=0,
- param_attr=ParamAttr(name='hrfpn_reduction_weights'),
- bias_attr=False)
- # conv
- outs = [out]
- for i in range(1, num_out):
- outs.append(
- self.pooling(
- out,
- size=2**i,
- stride=2**i,
- pooling_type=self.pooling_type))
- outputs = []
- for i in range(num_out):
- conv_name = "shared_fpn_conv" if self.share_conv else "shared_fpn_conv_" + str(
- i)
- conv = fluid.layers.conv2d(
- input=outs[i],
- num_filters=self.num_chan,
- filter_size=3,
- stride=1,
- padding=1,
- param_attr=ParamAttr(name=conv_name + "_weights"),
- bias_attr=False)
- outputs.append(conv)
- for idx in range(0, num_out - len(body_name_list)):
- body_name_list.append("fpn_res5_sum_subsampled_{}x".format(2**(
- idx + 1)))
- outputs = outputs[::-1]
- body_name_list = body_name_list[::-1]
- res_dict = OrderedDict([(body_name_list[k], outputs[k])
- for k in range(len(body_name_list))])
- return res_dict, self.spatial_scale
- def resize_input_tensor(self, body_input, ref_output, scale):
- shape = fluid.layers.shape(ref_output)
- shape_hw = fluid.layers.slice(shape, axes=[0], starts=[2], ends=[4])
- out_shape_ = shape_hw
- out_shape = fluid.layers.cast(out_shape_, dtype='int32')
- out_shape.stop_gradient = True
- body_output = fluid.layers.resize_bilinear(
- body_input, scale=scale, out_shape=out_shape)
- return body_output
- def pooling(self, input, size, stride, pooling_type):
- pool = fluid.layers.pool2d(
- input=input,
- pool_size=size,
- pool_stride=stride,
- pool_type=pooling_type)
- return pool
|