| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546 |
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import paddle
- class PostProcessor(paddle.nn.Layer):
- def __init__(self, model_type):
- super(PostProcessor, self).__init__()
- self.model_type = model_type
- def forward(self, net_outputs):
- if self.model_type == 'classifier':
- outputs = paddle.nn.functional.softmax(net_outputs, axis=1)
- elif self.model_type == 'segmenter':
- # score_map, label_map
- outputs = paddle.transpose(paddle.nn.functional.softmax(net_outputs, axis=1), perm=[0, 2, 3, 1]), \
- paddle.transpose(paddle.argmax(net_outputs, axis=1, keepdim=True, dtype='int32'),
- perm=[0, 2, 3, 1])
- else:
- outputs = net_outputs
- return outputs
- class InferNet(paddle.nn.Layer):
- def __init__(self, net, model_type):
- super(InferNet, self).__init__()
- self.net = net
- self.postprocessor = PostProcessor(model_type)
- def forward(self, x):
- net_outputs = self.net(x)[0]
- outputs = self.postprocessor(net_outputs)
- return outputs
|