basic_predictor.py 5.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139
  1. # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from typing import Dict, Any, Iterator
  15. from abc import abstractmethod
  16. from .....utils.subclass_register import AutoRegisterABCMetaClass
  17. from .....utils.flags import (
  18. INFER_BENCHMARK,
  19. INFER_BENCHMARK_WARMUP,
  20. )
  21. from .....utils import logging
  22. from ....utils.pp_option import PaddlePredictorOption
  23. from ....utils.benchmark import benchmark
  24. from .base_predictor import BasePredictor
  25. class BasicPredictor(
  26. BasePredictor,
  27. metaclass=AutoRegisterABCMetaClass,
  28. ):
  29. """BasicPredictor."""
  30. __is_base = True
  31. def __init__(
  32. self,
  33. model_dir: str,
  34. config: Dict[str, Any] = None,
  35. device: str = None,
  36. batch_size: int = 1,
  37. pp_option: PaddlePredictorOption = None,
  38. ) -> None:
  39. """Initializes the BasicPredictor.
  40. Args:
  41. model_dir (str): The directory where the model files are stored.
  42. config (Dict[str, Any], optional): The configuration dictionary. Defaults to None.
  43. device (str, optional): The device to run the inference engine on. Defaults to None.
  44. batch_size (int, optional): The batch size to predict. Defaults to 1.
  45. pp_option (PaddlePredictorOption, optional): The inference engine options. Defaults to None.
  46. """
  47. super().__init__(model_dir=model_dir, config=config)
  48. if not pp_option:
  49. pp_option = PaddlePredictorOption(model_name=self.model_name)
  50. if device:
  51. pp_option.device = device
  52. trt_dynamic_shapes = (
  53. self.config.get("Hpi", {})
  54. .get("backend_configs", {})
  55. .get("paddle_infer", {})
  56. .get("trt_dynamic_shapes", None)
  57. )
  58. if trt_dynamic_shapes:
  59. pp_option.trt_dynamic_shapes = trt_dynamic_shapes
  60. self.pp_option = pp_option
  61. self.pp_option.batch_size = batch_size
  62. self.batch_sampler.batch_size = batch_size
  63. logging.debug(f"{self.__class__.__name__}: {self.model_dir}")
  64. self.benchmark = benchmark
  65. def __call__(
  66. self,
  67. input: Any,
  68. batch_size: int = None,
  69. device: str = None,
  70. pp_option: PaddlePredictorOption = None,
  71. **kwargs: Dict[str, Any],
  72. ) -> Iterator[Any]:
  73. """
  74. Predict with the input data.
  75. Args:
  76. input (Any): The input data to be predicted.
  77. batch_size (int, optional): The batch size to use. Defaults to None.
  78. device (str, optional): The device to run the predictor on. Defaults to None.
  79. pp_option (PaddlePredictorOption, optional): The predictor options to set. Defaults to None.
  80. **kwargs (Dict[str, Any]): Additional keyword arguments to set up predictor.
  81. Returns:
  82. Iterator[Any]: An iterator yielding the prediction output.
  83. """
  84. self.set_predictor(batch_size, device, pp_option)
  85. if self.benchmark:
  86. self.benchmark.start()
  87. if INFER_BENCHMARK_WARMUP > 0:
  88. output = self.apply(input, **kwargs)
  89. warmup_num = 0
  90. for _ in range(INFER_BENCHMARK_WARMUP):
  91. try:
  92. next(output)
  93. warmup_num += 1
  94. except StopIteration:
  95. logging.warning(
  96. f"There are only {warmup_num} batches in input data, but `INFER_BENCHMARK_WARMUP` has been set to {INFER_BENCHMARK_WARMUP}."
  97. )
  98. break
  99. self.benchmark.warmup_stop(warmup_num)
  100. output = list(self.apply(input, **kwargs))
  101. self.benchmark.collect(len(output))
  102. else:
  103. yield from self.apply(input, **kwargs)
  104. def set_predictor(
  105. self,
  106. batch_size: int = None,
  107. device: str = None,
  108. pp_option: PaddlePredictorOption = None,
  109. ) -> None:
  110. """
  111. Sets the predictor configuration.
  112. Args:
  113. batch_size (int, optional): The batch size to use. Defaults to None.
  114. device (str, optional): The device to run the predictor on. Defaults to None.
  115. pp_option (PaddlePredictorOption, optional): The predictor options to set. Defaults to None.
  116. Returns:
  117. None
  118. """
  119. if batch_size:
  120. self.batch_sampler.batch_size = batch_size
  121. self.pp_option.batch_size = batch_size
  122. if device and device != self.pp_option.device:
  123. self.pp_option.device = device
  124. if pp_option and pp_option != self.pp_option:
  125. self.pp_option = pp_option