predictor.py 5.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156
  1. # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from typing import Any, Union, Dict, List, Tuple
  15. import numpy as np
  16. from ....utils.func_register import FuncRegister
  17. from ....modules.general_recognition.model_list import MODELS
  18. from ...common.batch_sampler import ImageBatchSampler
  19. from ...common.reader import ReadImage
  20. from ..common import (
  21. Resize,
  22. ResizeByShort,
  23. Normalize,
  24. ToCHWImage,
  25. ToBatch,
  26. StaticInfer,
  27. )
  28. from ..base import BasicPredictor
  29. from .processors import NormalizeFeatures
  30. from .result import IdentityResult
  31. class ImageFeaturePredictor(BasicPredictor):
  32. """ImageFeaturePredictor that inherits from BasicPredictor."""
  33. entities = MODELS
  34. _FUNC_MAP = {}
  35. register = FuncRegister(_FUNC_MAP)
  36. def __init__(self, *args: List, **kwargs: Dict) -> None:
  37. """Initializes ClasPredictor.
  38. Args:
  39. *args: Arbitrary positional arguments passed to the superclass.
  40. **kwargs: Arbitrary keyword arguments passed to the superclass.
  41. """
  42. super().__init__(*args, **kwargs)
  43. self.preprocessors, self.infer, self.postprocessors = self._build()
  44. def _build_batch_sampler(self) -> ImageBatchSampler:
  45. """Builds and returns an ImageBatchSampler instance.
  46. Returns:
  47. ImageBatchSampler: An instance of ImageBatchSampler.
  48. """
  49. return ImageBatchSampler()
  50. def _get_result_class(self) -> type:
  51. """Returns the result class, IdentityResult.
  52. Returns:
  53. type: The IdentityResult class.
  54. """
  55. return IdentityResult
  56. def _build(self) -> Tuple:
  57. """Build the preprocessors, inference engine, and postprocessors based on the configuration.
  58. Returns:
  59. tuple: A tuple containing the preprocessors, inference engine, and postprocessors.
  60. """
  61. preprocessors = {"Read": ReadImage(format="RGB")}
  62. for cfg in self.config["PreProcess"]["transform_ops"]:
  63. tf_key = list(cfg.keys())[0]
  64. func = self._FUNC_MAP[tf_key]
  65. args = cfg.get(tf_key, {})
  66. if args is not None and "return_numpy" in args:
  67. args.pop("return_numpy")
  68. name, op = func(self, **args) if args else func(self)
  69. preprocessors[name] = op
  70. preprocessors["ToBatch"] = ToBatch()
  71. infer = StaticInfer(
  72. model_dir=self.model_dir,
  73. model_prefix=self.MODEL_FILE_PREFIX,
  74. option=self.pp_option,
  75. )
  76. postprocessors = {}
  77. for key in self.config["PostProcess"]:
  78. func = self._FUNC_MAP.get(key)
  79. args = self.config["PostProcess"].get(key, {})
  80. name, op = func(self, **args) if args else func(self)
  81. postprocessors[name] = op
  82. return preprocessors, infer, postprocessors
  83. def process(self, batch_data: List[Union[str, np.ndarray]]) -> Dict[str, Any]:
  84. """
  85. Process a batch of data through the preprocessing, inference, and postprocessing.
  86. Args:
  87. batch_data (List[Union[str, np.ndarray], ...]): A batch of input data (e.g., image file paths).
  88. Returns:
  89. dict: A dictionary containing the input path, raw image, class IDs, scores, and label names for every instance of the batch. Keys include 'input_path', 'input_img', 'class_ids', 'scores', and 'label_names'.
  90. """
  91. batch_raw_imgs = self.preprocessors["Read"](imgs=batch_data.instances)
  92. batch_imgs = self.preprocessors["Resize"](imgs=batch_raw_imgs)
  93. batch_imgs = self.preprocessors["Normalize"](imgs=batch_imgs)
  94. batch_imgs = self.preprocessors["ToCHW"](imgs=batch_imgs)
  95. x = self.preprocessors["ToBatch"](imgs=batch_imgs)
  96. batch_preds = self.infer(x=x)
  97. features = self.postprocessors["NormalizeFeatures"](batch_preds)
  98. return {
  99. "input_path": batch_data.input_paths,
  100. "page_index": batch_data.page_indexes,
  101. "input_img": batch_raw_imgs,
  102. "feature": features,
  103. }
  104. @register("ResizeImage")
  105. # TODO(gaotingquan): backend & interpolation
  106. def build_resize(
  107. self, resize_short=None, size=None, backend="cv2", interpolation="LINEAR"
  108. ):
  109. assert resize_short or size
  110. if resize_short:
  111. op = ResizeByShort(
  112. target_short_edge=resize_short, size_divisor=None, interp="LINEAR"
  113. )
  114. else:
  115. op = Resize(target_size=size)
  116. return "Resize", op
  117. @register("NormalizeImage")
  118. def build_normalize(
  119. self,
  120. mean=[0.485, 0.456, 0.406],
  121. std=[0.229, 0.224, 0.225],
  122. scale=1 / 255,
  123. order="",
  124. channel_num=3,
  125. ):
  126. assert channel_num == 3
  127. return "Normalize", Normalize(scale=scale, mean=mean, std=std)
  128. @register("ToCHWImage")
  129. def build_to_chw(self):
  130. return "ToCHW", ToCHWImage()
  131. @register("NormalizeFeatures")
  132. def build_normalize_features(self):
  133. return "NormalizeFeatures", NormalizeFeatures()