| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798 |
- # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from ....modules.text_recognition.model_list import MODELS
- from ....utils.func_register import FuncRegister
- from ...common.batch_sampler import ImageBatchSampler
- from ...common.reader import ReadImage
- from ..base import BasePredictor
- from .processors import CTCLabelDecode, OCRReisizeNormImg, ToBatch
- from .result import TextRecResult
- class TextRecPredictor(BasePredictor):
- entities = MODELS
- _FUNC_MAP = {}
- register = FuncRegister(_FUNC_MAP)
- def __init__(self, *args, input_shape=None, **kwargs):
- super().__init__(*args, **kwargs)
- self.input_shape = input_shape
- self.pre_tfs, self.infer, self.post_op = self._build()
- def _build_batch_sampler(self):
- return ImageBatchSampler()
- def _get_result_class(self):
- return TextRecResult
- def _build(self):
- pre_tfs = {"Read": ReadImage(format="RGB")}
- for cfg in self.config["PreProcess"]["transform_ops"]:
- tf_key = list(cfg.keys())[0]
- assert tf_key in self._FUNC_MAP
- func = self._FUNC_MAP[tf_key]
- args = cfg.get(tf_key, {})
- name, op = func(self, **args) if args else func(self)
- if op:
- pre_tfs[name] = op
- pre_tfs["ToBatch"] = ToBatch()
- infer = self.create_static_infer()
- post_op = self.build_postprocess(**self.config["PostProcess"])
- return pre_tfs, infer, post_op
- def process(self, batch_data):
- batch_raw_imgs = self.pre_tfs["Read"](imgs=batch_data.instances)
- batch_imgs = self.pre_tfs["ReisizeNorm"](imgs=batch_raw_imgs)
- x = self.pre_tfs["ToBatch"](imgs=batch_imgs)
- batch_preds = self.infer(x=x)
- texts, scores = self.post_op(batch_preds)
- return {
- "input_path": batch_data.input_paths,
- "page_index": batch_data.page_indexes,
- "input_img": batch_raw_imgs,
- "rec_text": texts,
- "rec_score": scores,
- }
- @register("DecodeImage")
- def build_readimg(self, channel_first, img_mode):
- assert channel_first == False
- return "Read", ReadImage(format=img_mode)
- @register("RecResizeImg")
- def build_resize(self, image_shape):
- return "ReisizeNorm", OCRReisizeNormImg(
- rec_image_shape=image_shape, input_shape=self.input_shape
- )
- def build_postprocess(self, **kwargs):
- if kwargs.get("name") == "CTCLabelDecode":
- return CTCLabelDecode(
- character_list=kwargs.get("character_dict"),
- )
- else:
- raise Exception()
- @register("MultiLabelEncode")
- def foo(self, *args, **kwargs):
- return None, None
- @register("KeepKeys")
- def foo(self, *args, **kwargs):
- return None, None
|