| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431 |
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os.path as osp
- from paddleslim import L1NormFilterPruner
- from . import cv
- from .cv.models.utils.visualize import visualize_segmentation
- from paddlex.cv.transforms import seg_transforms
- import paddlex.utils.logging as logging
- from paddlex.utils.checkpoint import seg_pretrain_weights_dict
- transforms = seg_transforms
- visualize = visualize_segmentation
- class UNet(cv.models.UNet):
- def __init__(self,
- num_classes=2,
- upsample_mode='bilinear',
- use_bce_loss=False,
- use_dice_loss=False,
- class_weight=None,
- ignore_index=None,
- input_channel=None):
- if num_classes > 2 and (use_bce_loss or use_dice_loss):
- raise ValueError(
- "dice loss and bce loss is only applicable to binary classification"
- )
- elif num_classes == 2:
- if use_bce_loss and use_dice_loss:
- use_mixed_loss = [('CrossEntropyLoss', 1), ('DiceLoss', 1)]
- elif use_bce_loss:
- use_mixed_loss = [('CrossEntropyLoss', 1)]
- elif use_dice_loss:
- use_mixed_loss = [('DiceLoss', 1)]
- else:
- use_mixed_loss = False
- else:
- use_mixed_loss = False
- if class_weight is not None:
- logging.warning(
- "`class_weight` is not supported in PaddleX 2.0 currently and is forcibly set to None."
- )
- if ignore_index is not None:
- logging.warning(
- "`ignore_index` is deprecated in PaddleX 2.0 and won't take effect. Defaults to 255."
- )
- if input_channel is not None:
- logging.warning(
- "`input_channel` is deprecated in PaddleX 2.0 and won't take effect. Defaults to 3."
- )
- if upsample_mode == 'bilinear':
- use_deconv = False
- else:
- use_deconv = True
- super(UNet, self).__init__(
- num_classes=num_classes,
- use_mixed_loss=use_mixed_loss,
- use_deconv=use_deconv)
- def train(self,
- num_epochs,
- train_dataset,
- train_batch_size=2,
- eval_dataset=None,
- save_interval_epochs=1,
- log_interval_steps=2,
- save_dir='output',
- pretrain_weights='COCO',
- optimizer=None,
- learning_rate=0.01,
- lr_decay_power=0.9,
- use_vdl=False,
- sensitivities_file=None,
- pruned_flops=.2,
- early_stop=False,
- early_stop_patience=5):
- _legacy_train(
- self,
- num_epochs=num_epochs,
- train_dataset=train_dataset,
- train_batch_size=train_batch_size,
- eval_dataset=eval_dataset,
- save_interval_epochs=save_interval_epochs,
- log_interval_steps=log_interval_steps,
- save_dir=save_dir,
- pretrain_weights=pretrain_weights,
- optimizer=optimizer,
- learning_rate=learning_rate,
- lr_decay_power=lr_decay_power,
- use_vdl=use_vdl,
- sensitivities_file=sensitivities_file,
- pruned_flops=pruned_flops,
- early_stop=early_stop,
- early_stop_patience=early_stop_patience)
- class DeepLabv3p(cv.models.DeepLabV3P):
- def __init__(self,
- num_classes=2,
- backbone='ResNet50_vd',
- output_stride=8,
- aspp_with_sep_conv=None,
- decoder_use_sep_conv=None,
- encoder_with_aspp=None,
- enable_decoder=None,
- use_bce_loss=False,
- use_dice_loss=False,
- class_weight=None,
- ignore_index=None,
- pooling_crop_size=None,
- input_channel=None):
- if num_classes > 2 and (use_bce_loss or use_dice_loss):
- raise ValueError(
- "dice loss and bce loss is only applicable to binary classification"
- )
- elif num_classes == 2:
- if use_bce_loss and use_dice_loss:
- use_mixed_loss = [('CrossEntropyLoss', 1), ('DiceLoss', 1)]
- elif use_bce_loss:
- use_mixed_loss = [('CrossEntropyLoss', 1)]
- elif use_dice_loss:
- use_mixed_loss = [('DiceLoss', 1)]
- else:
- use_mixed_loss = False
- else:
- use_mixed_loss = False
- if aspp_with_sep_conv is not None:
- logging.warning(
- "`aspp_with_sep_conv` is deprecated in PaddleX 2.0 and will not take effect. "
- "Defaults to True")
- if decoder_use_sep_conv is not None:
- logging.warning(
- "`decoder_use_sep_conv` is deprecated in PaddleX 2.0 and will not take effect. "
- "Defaults to True")
- if encoder_with_aspp is not None:
- logging.warning(
- "`encoder_with_aspp` is deprecated in PaddleX 2.0 and will not take effect. "
- "Defaults to True")
- if enable_decoder is not None:
- logging.warning(
- "`enable_decoder` is deprecated in PaddleX 2.0 and will not take effect. "
- "Defaults to True")
- if class_weight is not None:
- logging.warning(
- "`class_weight` is not supported in PaddleX 2.0 currently and is forcibly set to None."
- )
- if ignore_index is not None:
- logging.warning(
- "`ignore_index` is deprecated in PaddleX 2.0 and won't take effect. Defaults to 255."
- )
- if pooling_crop_size is not None:
- logging.warning(
- "Backbone 'MobileNetV3_large_x1_0_ssld' is currently not supported in PaddleX 2.0. "
- "`pooling_crop_size` will not take effect. Defaults to None")
- if input_channel is not None:
- logging.warning(
- "`input_channel` is deprecated in PaddleX 2.0 and won't take effect. Defaults to 3."
- )
- super(DeepLabv3p, self).__init__(
- num_classes=num_classes,
- backbone=backbone,
- use_mixed_loss=use_mixed_loss,
- output_stride=output_stride)
- def train(self,
- num_epochs,
- train_dataset,
- train_batch_size=2,
- eval_dataset=None,
- save_interval_epochs=1,
- log_interval_steps=2,
- save_dir='output',
- pretrain_weights='IMAGENET',
- optimizer=None,
- learning_rate=0.01,
- lr_decay_power=0.9,
- use_vdl=False,
- sensitivities_file=None,
- pruned_flops=.2,
- early_stop=False,
- early_stop_patience=5):
- _legacy_train(
- self,
- num_epochs=num_epochs,
- train_dataset=train_dataset,
- train_batch_size=train_batch_size,
- eval_dataset=eval_dataset,
- save_interval_epochs=save_interval_epochs,
- log_interval_steps=log_interval_steps,
- save_dir=save_dir,
- pretrain_weights=pretrain_weights,
- optimizer=optimizer,
- learning_rate=learning_rate,
- lr_decay_power=lr_decay_power,
- use_vdl=use_vdl,
- sensitivities_file=sensitivities_file,
- pruned_flops=pruned_flops,
- early_stop=early_stop,
- early_stop_patience=early_stop_patience)
- class HRNet(cv.models.HRNet):
- def __init__(self,
- num_classes=2,
- width=18,
- use_bce_loss=False,
- use_dice_loss=False,
- class_weight=None,
- ignore_index=None,
- input_channel=None):
- if num_classes > 2 and (use_bce_loss or use_dice_loss):
- raise ValueError(
- "dice loss and bce loss is only applicable to binary classification"
- )
- elif num_classes == 2:
- if use_bce_loss and use_dice_loss:
- use_mixed_loss = [('CrossEntropyLoss', 1), ('DiceLoss', 1)]
- elif use_bce_loss:
- use_mixed_loss = [('CrossEntropyLoss', 1)]
- elif use_dice_loss:
- use_mixed_loss = [('DiceLoss', 1)]
- else:
- use_mixed_loss = False
- else:
- use_mixed_loss = False
- if class_weight is not None:
- logging.warning(
- "`class_weight` is not supported in PaddleX 2.0 currently and is forcibly set to None."
- )
- if ignore_index is not None:
- logging.warning(
- "`ignore_index` is deprecated in PaddleX 2.0 and won't take effect. Defaults to 255."
- )
- if input_channel is not None:
- logging.warning(
- "`input_channel` is deprecated in PaddleX 2.0 and won't take effect. Defaults to 3."
- )
- super(HRNet, self).__init__(
- num_classes=num_classes,
- width=width,
- use_mixed_loss=use_mixed_loss)
- def train(self,
- num_epochs,
- train_dataset,
- train_batch_size=2,
- eval_dataset=None,
- save_interval_epochs=1,
- log_interval_steps=2,
- save_dir='output',
- pretrain_weights='IMAGENET',
- optimizer=None,
- learning_rate=0.01,
- lr_decay_power=0.9,
- use_vdl=False,
- sensitivities_file=None,
- pruned_flops=.2,
- early_stop=False,
- early_stop_patience=5):
- _legacy_train(
- self,
- num_epochs=num_epochs,
- train_dataset=train_dataset,
- train_batch_size=train_batch_size,
- eval_dataset=eval_dataset,
- save_interval_epochs=save_interval_epochs,
- log_interval_steps=log_interval_steps,
- save_dir=save_dir,
- pretrain_weights=pretrain_weights,
- optimizer=optimizer,
- learning_rate=learning_rate,
- lr_decay_power=lr_decay_power,
- use_vdl=use_vdl,
- sensitivities_file=sensitivities_file,
- pruned_flops=pruned_flops,
- early_stop=early_stop,
- early_stop_patience=early_stop_patience)
- class FastSCNN(cv.models.FastSCNN):
- def __init__(self,
- num_classes=2,
- use_bce_loss=False,
- use_dice_loss=False,
- class_weight=None,
- ignore_index=255,
- multi_loss_weight=None,
- input_channel=3):
- if num_classes > 2 and (use_bce_loss or use_dice_loss):
- raise ValueError(
- "dice loss and bce loss is only applicable to binary classification"
- )
- elif num_classes == 2:
- if use_bce_loss and use_dice_loss:
- use_mixed_loss = [('CrossEntropyLoss', 1), ('DiceLoss', 1)]
- elif use_bce_loss:
- use_mixed_loss = [('CrossEntropyLoss', 1)]
- elif use_dice_loss:
- use_mixed_loss = [('DiceLoss', 1)]
- else:
- use_mixed_loss = False
- else:
- use_mixed_loss = False
- if class_weight is not None:
- logging.warning(
- "`class_weight` is not supported in PaddleX 2.0 currently and is forcibly set to None."
- )
- if ignore_index is not None:
- logging.warning(
- "`ignore_index` is deprecated in PaddleX 2.0 and won't take effect. Defaults to 255."
- )
- if multi_loss_weight is not None:
- logging.warning(
- "`multi_loss_weight` is deprecated in PaddleX 2.0 and will not take effect. "
- "Defaults to [1.0, 0.4]")
- if input_channel is not None:
- logging.warning(
- "`input_channel` is deprecated in PaddleX 2.0 and won't take effect. Defaults to 3."
- )
- super(FastSCNN, self).__init__(
- num_classes=num_classes, use_mixed_loss=use_mixed_loss)
- def train(self,
- num_epochs,
- train_dataset,
- train_batch_size=2,
- eval_dataset=None,
- save_interval_epochs=1,
- log_interval_steps=2,
- save_dir='output',
- pretrain_weights='CITYSCAPES',
- optimizer=None,
- learning_rate=0.01,
- lr_decay_power=0.9,
- use_vdl=False,
- sensitivities_file=None,
- pruned_flops=.2,
- early_stop=False,
- early_stop_patience=5):
- _legacy_train(
- self,
- num_epochs=num_epochs,
- train_dataset=train_dataset,
- train_batch_size=train_batch_size,
- eval_dataset=eval_dataset,
- save_interval_epochs=save_interval_epochs,
- log_interval_steps=log_interval_steps,
- save_dir=save_dir,
- pretrain_weights=pretrain_weights,
- optimizer=optimizer,
- learning_rate=learning_rate,
- lr_decay_power=lr_decay_power,
- use_vdl=use_vdl,
- sensitivities_file=sensitivities_file,
- pruned_flops=pruned_flops,
- early_stop=early_stop,
- early_stop_patience=early_stop_patience)
- def _legacy_train(model, num_epochs, train_dataset, train_batch_size,
- eval_dataset, save_interval_epochs, log_interval_steps,
- save_dir, pretrain_weights, optimizer, learning_rate,
- lr_decay_power, use_vdl, sensitivities_file, pruned_flops,
- early_stop, early_stop_patience):
- model.labels = train_dataset.labels
- if model.losses is None:
- model.losses = model.default_loss()
- if sensitivities_file is not None:
- dataset = eval_dataset or train_dataset
- inputs = [1] + list(dataset[0]['image'].shape)
- model.pruner = L1NormFilterPruner(
- model.net, inputs=inputs, sen_file=sensitivities_file)
- model.pruner.sensitive_prune(pruned_flops=pruned_flops)
- # build optimizer if not defined
- if optimizer is None:
- num_steps_each_epoch = train_dataset.num_samples // train_batch_size
- model.optimizer = model.default_optimizer(
- model.net.parameters(), learning_rate, num_epochs,
- num_steps_each_epoch, lr_decay_power)
- else:
- model.optimizer = optimizer
- # initiate weights
- if pretrain_weights is not None and not osp.exists(pretrain_weights):
- if pretrain_weights not in seg_pretrain_weights_dict[model.model_name]:
- logging.warning("Path of pretrain_weights('{}') does not exist!".
- format(pretrain_weights))
- logging.warning("Pretrain_weights is forcibly set to '{}'. "
- "If don't want to use pretrain weights, "
- "set pretrain_weights to be None.".format(
- seg_pretrain_weights_dict[model.model_name][
- 0]))
- pretrain_weights = seg_pretrain_weights_dict[model.model_name][0]
- pretrained_dir = osp.join(save_dir, 'pretrain')
- model.net_initialize(
- pretrain_weights=pretrain_weights, save_dir=pretrained_dir)
- model.train_loop(
- num_epochs=num_epochs,
- train_dataset=train_dataset,
- train_batch_size=train_batch_size,
- eval_dataset=eval_dataset,
- save_interval_epochs=save_interval_epochs,
- log_interval_steps=log_interval_steps,
- save_dir=save_dir,
- early_stop=early_stop,
- early_stop_patience=early_stop_patience,
- use_vdl=use_vdl)
|