pipeline.py 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589
  1. # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from typing import Dict, Optional, Union, List, Tuple
  15. import numpy as np
  16. from ..base import BasePipeline
  17. from .utils import get_sub_regions_ocr_res, sorted_layout_boxes
  18. from ..components import CropByBoxes
  19. from .result import LayoutParsingResult
  20. from ....utils import logging
  21. from ...utils.pp_option import PaddlePredictorOption
  22. from ...common.reader import ReadImage
  23. from ...common.batch_sampler import ImageBatchSampler
  24. from ..ocr.result import OCRResult
  25. from ...models.object_detection.result import DetResult
  26. class LayoutParsingPipeline(BasePipeline):
  27. """Layout Parsing Pipeline"""
  28. entities = ["layout_parsing"]
  29. def __init__(
  30. self,
  31. config: Dict,
  32. device: str = None,
  33. pp_option: PaddlePredictorOption = None,
  34. use_hpip: bool = False,
  35. ) -> None:
  36. """Initializes the layout parsing pipeline.
  37. Args:
  38. config (Dict): Configuration dictionary containing various settings.
  39. device (str, optional): Device to run the predictions on. Defaults to None.
  40. pp_option (PaddlePredictorOption, optional): PaddlePredictor options. Defaults to None.
  41. use_hpip (bool, optional): Whether to use high-performance inference (hpip) for prediction. Defaults to False.
  42. """
  43. super().__init__(device=device, pp_option=pp_option, use_hpip=use_hpip)
  44. self.inintial_predictor(config)
  45. self.batch_sampler = ImageBatchSampler(batch_size=1)
  46. self.img_reader = ReadImage(format="BGR")
  47. self._crop_by_boxes = CropByBoxes()
  48. def inintial_predictor(self, config: Dict) -> None:
  49. """Initializes the predictor based on the provided configuration.
  50. Args:
  51. config (Dict): A dictionary containing the configuration for the predictor.
  52. Returns:
  53. None
  54. """
  55. self.use_doc_preprocessor = config.get("use_doc_preprocessor", True)
  56. self.use_general_ocr = config.get("use_general_ocr", True)
  57. self.use_table_recognition = config.get("use_table_recognition", True)
  58. self.use_seal_recognition = config.get("use_seal_recognition", True)
  59. self.use_formula_recognition = config.get("use_formula_recognition", True)
  60. if self.use_doc_preprocessor:
  61. doc_preprocessor_config = config.get("SubPipelines", {}).get(
  62. "DocPreprocessor",
  63. {
  64. "pipeline_config_error": "config error for doc_preprocessor_pipeline!"
  65. },
  66. )
  67. self.doc_preprocessor_pipeline = self.create_pipeline(
  68. doc_preprocessor_config
  69. )
  70. layout_det_config = config.get("SubModules", {}).get(
  71. "LayoutDetection",
  72. {"model_config_error": "config error for layout_det_model!"},
  73. )
  74. layout_kwargs = {}
  75. if (threshold := layout_det_config.get("threshold", None)) is not None:
  76. layout_kwargs["threshold"] = threshold
  77. if (layout_nms := layout_det_config.get("layout_nms", None)) is not None:
  78. layout_kwargs["layout_nms"] = layout_nms
  79. if (
  80. layout_unclip_ratio := layout_det_config.get("layout_unclip_ratio", None)
  81. ) is not None:
  82. layout_kwargs["layout_unclip_ratio"] = layout_unclip_ratio
  83. if (
  84. layout_merge_bboxes_mode := layout_det_config.get(
  85. "layout_merge_bboxes_mode", None
  86. )
  87. ) is not None:
  88. layout_kwargs["layout_merge_bboxes_mode"] = layout_merge_bboxes_mode
  89. self.layout_det_model = self.create_model(layout_det_config, **layout_kwargs)
  90. if self.use_general_ocr or self.use_table_recognition:
  91. general_ocr_config = config.get("SubPipelines", {}).get(
  92. "GeneralOCR",
  93. {"pipeline_config_error": "config error for general_ocr_pipeline!"},
  94. )
  95. self.general_ocr_pipeline = self.create_pipeline(general_ocr_config)
  96. if self.use_seal_recognition:
  97. seal_recognition_config = config.get("SubPipelines", {}).get(
  98. "SealRecognition",
  99. {
  100. "pipeline_config_error": "config error for seal_recognition_pipeline!"
  101. },
  102. )
  103. self.seal_recognition_pipeline = self.create_pipeline(
  104. seal_recognition_config
  105. )
  106. if self.use_table_recognition:
  107. table_recognition_config = config.get("SubPipelines", {}).get(
  108. "TableRecognition",
  109. {
  110. "pipeline_config_error": "config error for table_recognition_pipeline!"
  111. },
  112. )
  113. self.table_recognition_pipeline = self.create_pipeline(
  114. table_recognition_config
  115. )
  116. if self.use_formula_recognition:
  117. formula_recognition_config = config.get("SubPipelines", {}).get(
  118. "FormulaRecognition",
  119. {
  120. "pipeline_config_error": "config error for formula_recognition_pipeline!"
  121. },
  122. )
  123. self.formula_recognition_pipeline = self.create_pipeline(
  124. formula_recognition_config
  125. )
  126. return
  127. def get_text_paragraphs_ocr_res(
  128. self, overall_ocr_res: OCRResult, layout_det_res: DetResult
  129. ) -> OCRResult:
  130. """
  131. Retrieves the OCR results for text paragraphs, excluding those of formulas, tables, and seals.
  132. Args:
  133. overall_ocr_res (OCRResult): The overall OCR result containing text information.
  134. layout_det_res (DetResult): The detection result containing the layout information of the document.
  135. Returns:
  136. OCRResult: The OCR result for text paragraphs after excluding formulas, tables, and seals.
  137. """
  138. object_boxes = []
  139. for box_info in layout_det_res["boxes"]:
  140. if box_info["label"].lower() in ["formula", "table", "seal"]:
  141. object_boxes.append(box_info["coordinate"])
  142. object_boxes = np.array(object_boxes)
  143. sub_regions_ocr_res = get_sub_regions_ocr_res(
  144. overall_ocr_res, object_boxes, flag_within=False
  145. )
  146. return sub_regions_ocr_res
  147. def get_layout_parsing_res(
  148. self,
  149. image: list,
  150. layout_det_res: DetResult,
  151. overall_ocr_res: OCRResult,
  152. table_res_list: list,
  153. seal_res_list: list,
  154. formula_res_list: list,
  155. text_det_limit_side_len: Optional[int] = None,
  156. text_det_limit_type: Optional[str] = None,
  157. text_det_thresh: Optional[float] = None,
  158. text_det_box_thresh: Optional[float] = None,
  159. text_det_unclip_ratio: Optional[float] = None,
  160. text_rec_score_thresh: Optional[float] = None,
  161. ) -> list:
  162. """
  163. Retrieves the layout parsing result based on the layout detection result, OCR result, and other recognition results.
  164. Args:
  165. image (list): The input image.
  166. layout_det_res (DetResult): The detection result containing the layout information of the document.
  167. overall_ocr_res (OCRResult): The overall OCR result containing text information.
  168. table_res_list (list): A list of table recognition results.
  169. seal_res_list (list): A list of seal recognition results.
  170. formula_res_list (list): A list of formula recognition results.
  171. text_det_limit_side_len (Optional[int], optional): The maximum side length of the text detection region. Defaults to None.
  172. text_det_limit_type (Optional[str], optional): The type of limit for the text detection region. Defaults to None.
  173. text_det_thresh (Optional[float], optional): The confidence threshold for text detection. Defaults to None.
  174. text_det_box_thresh (Optional[float], optional): The confidence threshold for text detection bounding boxes. Defaults to None
  175. text_det_unclip_ratio (Optional[float], optional): The unclip ratio for text detection. Defaults to None.
  176. text_rec_score_thresh (Optional[float], optional): The score threshold for text recognition. Defaults to None.
  177. Returns:
  178. list: A list of dictionaries representing the layout parsing result.
  179. """
  180. layout_parsing_res = []
  181. sub_image_list = []
  182. matched_ocr_dict = {}
  183. sub_image_region_id = 0
  184. formula_index = 0
  185. table_index = 0
  186. seal_index = 0
  187. image = np.array(image)
  188. image_labels = ["image", "figure", "img", "fig"]
  189. object_boxes = []
  190. for object_box_idx, box_info in enumerate(layout_det_res["boxes"]):
  191. single_box_res = {}
  192. box = box_info["coordinate"]
  193. label = box_info["label"].lower()
  194. single_box_res["layout_bbox"] = box
  195. object_boxes.append(box)
  196. if label == "formula" and len(formula_res_list) > formula_index:
  197. single_box_res["formula"] = formula_res_list[formula_index][
  198. "rec_formula"
  199. ]
  200. formula_index += 1
  201. elif label == "table" and len(table_res_list) > table_index:
  202. single_box_res["table"] = table_res_list[table_index]["pred_html"]
  203. table_index += 1
  204. elif label == "seal" and len(seal_res_list) > seal_index:
  205. single_box_res["seal"] = "".join(seal_res_list[seal_index]["rec_texts"])
  206. seal_index += 1
  207. else:
  208. ocr_res_in_box, matched_idxs = get_sub_regions_ocr_res(
  209. overall_ocr_res, [box], return_match_idx=True
  210. )
  211. for matched_idx in matched_idxs:
  212. if matched_ocr_dict.get(matched_idx, None) is None:
  213. matched_ocr_dict[matched_idx] = [object_box_idx]
  214. else:
  215. matched_ocr_dict[matched_idx].append(object_box_idx)
  216. if label in image_labels:
  217. crop_img_info = self._crop_by_boxes(image, [box_info])
  218. crop_img_info = crop_img_info[0]
  219. sub_image_list.append(crop_img_info["img"])
  220. single_box_res[f"{label}_text"] = "\n".join(
  221. ocr_res_in_box["rec_texts"]
  222. )
  223. else:
  224. single_box_res["text"] = "\n".join(ocr_res_in_box["rec_texts"])
  225. if single_box_res:
  226. layout_parsing_res.append(single_box_res)
  227. for layout_box_ids in matched_ocr_dict.values():
  228. # one ocr is matched to multiple layout boxes, split the text into multiple lines
  229. if len(layout_box_ids) > 1:
  230. for idx in layout_box_ids:
  231. wht_im = np.ones(image.shape, dtype=image.dtype) * 255
  232. box = layout_parsing_res[idx]["layout_bbox"]
  233. x1, y1, x2, y2 = [int(i) for i in box]
  234. wht_im[y1:y2, x1:x2, :] = image[y1:y2, x1:x2, :]
  235. sub_ocr_res = next(
  236. self.general_ocr_pipeline(
  237. wht_im,
  238. text_det_limit_side_len=text_det_limit_side_len,
  239. text_det_limit_type=text_det_limit_type,
  240. text_det_thresh=text_det_thresh,
  241. text_det_box_thresh=text_det_box_thresh,
  242. text_det_unclip_ratio=text_det_unclip_ratio,
  243. text_rec_score_thresh=text_rec_score_thresh,
  244. )
  245. )
  246. layout_parsing_res[idx]["text"] = "\n".join(
  247. sub_ocr_res["rec_texts"]
  248. )
  249. ocr_without_layout_boxes = get_sub_regions_ocr_res(
  250. overall_ocr_res, object_boxes, flag_within=False
  251. )
  252. for ocr_rec_box, ocr_rec_text in zip(
  253. ocr_without_layout_boxes["rec_boxes"], ocr_without_layout_boxes["rec_texts"]
  254. ):
  255. single_box_res = {}
  256. single_box_res["layout_bbox"] = ocr_rec_box
  257. single_box_res["text_without_layout"] = ocr_rec_text
  258. layout_parsing_res.append(single_box_res)
  259. layout_parsing_res = sorted_layout_boxes(layout_parsing_res, w=image.shape[1])
  260. return layout_parsing_res, sub_image_list
  261. def check_model_settings_valid(self, input_params: Dict) -> bool:
  262. """
  263. Check if the input parameters are valid based on the initialized models.
  264. Args:
  265. input_params (Dict): A dictionary containing input parameters.
  266. Returns:
  267. bool: True if all required models are initialized according to input parameters, False otherwise.
  268. """
  269. if input_params["use_doc_preprocessor"] and not self.use_doc_preprocessor:
  270. logging.error(
  271. "Set use_doc_preprocessor, but the models for doc preprocessor are not initialized."
  272. )
  273. return False
  274. if input_params["use_general_ocr"] and not self.use_general_ocr:
  275. logging.error(
  276. "Set use_general_ocr, but the models for general OCR are not initialized."
  277. )
  278. return False
  279. if input_params["use_seal_recognition"] and not self.use_seal_recognition:
  280. logging.error(
  281. "Set use_seal_recognition, but the models for seal recognition are not initialized."
  282. )
  283. return False
  284. if input_params["use_table_recognition"] and not self.use_table_recognition:
  285. logging.error(
  286. "Set use_table_recognition, but the models for table recognition are not initialized."
  287. )
  288. return False
  289. return True
  290. def get_model_settings(
  291. self,
  292. use_doc_orientation_classify: Optional[bool],
  293. use_doc_unwarping: Optional[bool],
  294. use_general_ocr: Optional[bool],
  295. use_seal_recognition: Optional[bool],
  296. use_table_recognition: Optional[bool],
  297. use_formula_recognition: Optional[bool],
  298. ) -> dict:
  299. """
  300. Get the model settings based on the provided parameters or default values.
  301. Args:
  302. use_doc_orientation_classify (Optional[bool]): Whether to use document orientation classification.
  303. use_doc_unwarping (Optional[bool]): Whether to use document unwarping.
  304. use_general_ocr (Optional[bool]): Whether to use general OCR.
  305. use_seal_recognition (Optional[bool]): Whether to use seal recognition.
  306. use_table_recognition (Optional[bool]): Whether to use table recognition.
  307. Returns:
  308. dict: A dictionary containing the model settings.
  309. """
  310. if use_doc_orientation_classify is None and use_doc_unwarping is None:
  311. use_doc_preprocessor = self.use_doc_preprocessor
  312. else:
  313. if use_doc_orientation_classify is True or use_doc_unwarping is True:
  314. use_doc_preprocessor = True
  315. else:
  316. use_doc_preprocessor = False
  317. if use_general_ocr is None:
  318. use_general_ocr = self.use_general_ocr
  319. if use_seal_recognition is None:
  320. use_seal_recognition = self.use_seal_recognition
  321. if use_table_recognition is None:
  322. use_table_recognition = self.use_table_recognition
  323. if use_formula_recognition is None:
  324. use_formula_recognition = self.use_formula_recognition
  325. return dict(
  326. use_doc_preprocessor=use_doc_preprocessor,
  327. use_general_ocr=use_general_ocr,
  328. use_seal_recognition=use_seal_recognition,
  329. use_table_recognition=use_table_recognition,
  330. use_formula_recognition=use_formula_recognition,
  331. )
  332. def predict(
  333. self,
  334. input: Union[str, List[str], np.ndarray, List[np.ndarray]],
  335. use_doc_orientation_classify: Optional[bool] = None,
  336. use_doc_unwarping: Optional[bool] = None,
  337. use_textline_orientation: Optional[bool] = None,
  338. use_general_ocr: Optional[bool] = None,
  339. use_seal_recognition: Optional[bool] = None,
  340. use_table_recognition: Optional[bool] = None,
  341. use_formula_recognition: Optional[bool] = None,
  342. layout_threshold: Optional[Union[float, dict]] = None,
  343. layout_nms: Optional[bool] = None,
  344. layout_unclip_ratio: Optional[Union[float, Tuple[float, float]]] = None,
  345. layout_merge_bboxes_mode: Optional[str] = None,
  346. text_det_limit_side_len: Optional[int] = None,
  347. text_det_limit_type: Optional[str] = None,
  348. text_det_thresh: Optional[float] = None,
  349. text_det_box_thresh: Optional[float] = None,
  350. text_det_unclip_ratio: Optional[float] = None,
  351. text_rec_score_thresh: Optional[float] = None,
  352. seal_det_limit_side_len: Optional[int] = None,
  353. seal_det_limit_type: Optional[str] = None,
  354. seal_det_thresh: Optional[float] = None,
  355. seal_det_box_thresh: Optional[float] = None,
  356. seal_det_unclip_ratio: Optional[float] = None,
  357. seal_rec_score_thresh: Optional[float] = None,
  358. **kwargs,
  359. ) -> LayoutParsingResult:
  360. """
  361. This function predicts the layout parsing result for the given input.
  362. Args:
  363. input (Union[str, list[str], np.ndarray, list[np.ndarray]]): The input image(s) or pdf(s) to be processed.
  364. use_doc_orientation_classify (Optional[bool]): Whether to use document orientation classification.
  365. use_doc_unwarping (Optional[bool]): Whether to use document unwarping.
  366. use_textline_orientation (Optional[bool]): Whether to use textline orientation prediction.
  367. use_general_ocr (Optional[bool]): Whether to use general OCR.
  368. use_seal_recognition (Optional[bool]): Whether to use seal recognition.
  369. use_table_recognition (Optional[bool]): Whether to use table recognition.
  370. use_formula_recognition (Optional[bool]): Whether to use formula recognition.
  371. layout_threshold (Optional[float]): The threshold value to filter out low-confidence predictions. Default is None.
  372. layout_nms (bool, optional): Whether to use layout-aware NMS. Defaults to False.
  373. layout_unclip_ratio (Optional[Union[float, Tuple[float, float]]], optional): The ratio of unclipping the bounding box.
  374. Defaults to None.
  375. If it's a single number, then both width and height are used.
  376. If it's a tuple of two numbers, then they are used separately for width and height respectively.
  377. If it's None, then no unclipping will be performed.
  378. layout_merge_bboxes_mode (Optional[str], optional): The mode for merging bounding boxes. Defaults to None.
  379. text_det_limit_side_len (Optional[int]): Maximum side length for text detection.
  380. text_det_limit_type (Optional[str]): Type of limit to apply for text detection.
  381. text_det_thresh (Optional[float]): Threshold for text detection.
  382. text_det_box_thresh (Optional[float]): Threshold for text detection boxes.
  383. text_det_unclip_ratio (Optional[float]): Ratio for unclipping text detection boxes.
  384. text_rec_score_thresh (Optional[float]): Score threshold for text recognition.
  385. seal_det_limit_side_len (Optional[int]): Maximum side length for seal detection.
  386. seal_det_limit_type (Optional[str]): Type of limit to apply for seal detection.
  387. seal_det_thresh (Optional[float]): Threshold for seal detection.
  388. seal_det_box_thresh (Optional[float]): Threshold for seal detection boxes.
  389. seal_det_unclip_ratio (Optional[float]): Ratio for unclipping seal detection boxes.
  390. seal_rec_score_thresh (Optional[float]): Score threshold for seal recognition.
  391. **kwargs: Additional keyword arguments.
  392. Returns:
  393. LayoutParsingResult: The predicted layout parsing result.
  394. """
  395. model_settings = self.get_model_settings(
  396. use_doc_orientation_classify,
  397. use_doc_unwarping,
  398. use_general_ocr,
  399. use_seal_recognition,
  400. use_table_recognition,
  401. use_formula_recognition,
  402. )
  403. if not self.check_model_settings_valid(model_settings):
  404. yield {"error": "the input params for model settings are invalid!"}
  405. for img_id, batch_data in enumerate(self.batch_sampler(input)):
  406. image_array = self.img_reader(batch_data.instances)[0]
  407. if model_settings["use_doc_preprocessor"]:
  408. doc_preprocessor_res = next(
  409. self.doc_preprocessor_pipeline(
  410. image_array,
  411. use_doc_orientation_classify=use_doc_orientation_classify,
  412. use_doc_unwarping=use_doc_unwarping,
  413. )
  414. )
  415. else:
  416. doc_preprocessor_res = {"output_img": image_array}
  417. doc_preprocessor_image = doc_preprocessor_res["output_img"]
  418. layout_det_res = next(
  419. self.layout_det_model(
  420. doc_preprocessor_image,
  421. threshold=layout_threshold,
  422. layout_nms=layout_nms,
  423. layout_unclip_ratio=layout_unclip_ratio,
  424. layout_merge_bboxes_mode=layout_merge_bboxes_mode,
  425. )
  426. )
  427. if (
  428. model_settings["use_general_ocr"]
  429. or model_settings["use_table_recognition"]
  430. ):
  431. overall_ocr_res = next(
  432. self.general_ocr_pipeline(
  433. doc_preprocessor_image,
  434. use_textline_orientation=use_textline_orientation,
  435. text_det_limit_side_len=text_det_limit_side_len,
  436. text_det_limit_type=text_det_limit_type,
  437. text_det_thresh=text_det_thresh,
  438. text_det_box_thresh=text_det_box_thresh,
  439. text_det_unclip_ratio=text_det_unclip_ratio,
  440. text_rec_score_thresh=text_rec_score_thresh,
  441. )
  442. )
  443. else:
  444. overall_ocr_res = {}
  445. if model_settings["use_general_ocr"]:
  446. text_paragraphs_ocr_res = self.get_text_paragraphs_ocr_res(
  447. overall_ocr_res, layout_det_res
  448. )
  449. else:
  450. text_paragraphs_ocr_res = {}
  451. if model_settings["use_table_recognition"]:
  452. table_res_all = next(
  453. self.table_recognition_pipeline(
  454. doc_preprocessor_image,
  455. use_doc_orientation_classify=False,
  456. use_doc_unwarping=False,
  457. use_layout_detection=False,
  458. use_ocr_model=False,
  459. overall_ocr_res=overall_ocr_res,
  460. layout_det_res=layout_det_res,
  461. )
  462. )
  463. table_res_list = table_res_all["table_res_list"]
  464. else:
  465. table_res_list = []
  466. if model_settings["use_seal_recognition"]:
  467. seal_res_all = next(
  468. self.seal_recognition_pipeline(
  469. doc_preprocessor_image,
  470. use_doc_orientation_classify=False,
  471. use_doc_unwarping=False,
  472. use_layout_detection=False,
  473. layout_det_res=layout_det_res,
  474. seal_det_limit_side_len=seal_det_limit_side_len,
  475. seal_det_limit_type=seal_det_limit_type,
  476. seal_det_thresh=seal_det_thresh,
  477. seal_det_box_thresh=seal_det_box_thresh,
  478. seal_det_unclip_ratio=seal_det_unclip_ratio,
  479. seal_rec_score_thresh=seal_rec_score_thresh,
  480. )
  481. )
  482. seal_res_list = seal_res_all["seal_res_list"]
  483. else:
  484. seal_res_list = []
  485. if model_settings["use_formula_recognition"]:
  486. formula_res_all = next(
  487. self.formula_recognition_pipeline(
  488. doc_preprocessor_image,
  489. use_layout_detection=False,
  490. use_doc_orientation_classify=False,
  491. use_doc_unwarping=False,
  492. layout_det_res=layout_det_res,
  493. )
  494. )
  495. formula_res_list = formula_res_all["formula_res_list"]
  496. else:
  497. formula_res_list = []
  498. parsing_res_list, sub_image_list = self.get_layout_parsing_res(
  499. doc_preprocessor_image,
  500. layout_det_res=layout_det_res,
  501. overall_ocr_res=overall_ocr_res,
  502. table_res_list=table_res_list,
  503. seal_res_list=seal_res_list,
  504. formula_res_list=formula_res_list,
  505. text_det_limit_side_len=text_det_limit_side_len,
  506. text_det_limit_type=text_det_limit_type,
  507. text_det_thresh=text_det_thresh,
  508. text_det_box_thresh=text_det_box_thresh,
  509. text_det_unclip_ratio=text_det_unclip_ratio,
  510. text_rec_score_thresh=text_rec_score_thresh,
  511. )
  512. single_img_res = {
  513. "input_path": batch_data.input_paths[0],
  514. "page_index": batch_data.page_indexes[0],
  515. "doc_preprocessor_res": doc_preprocessor_res,
  516. "layout_det_res": layout_det_res,
  517. "overall_ocr_res": overall_ocr_res,
  518. "text_paragraphs_ocr_res": text_paragraphs_ocr_res,
  519. "table_res_list": table_res_list,
  520. "seal_res_list": seal_res_list,
  521. "formula_res_list": formula_res_list,
  522. "parsing_res_list": parsing_res_list,
  523. "model_settings": model_settings,
  524. "sub_image_list": sub_image_list,
  525. }
  526. yield LayoutParsingResult(single_img_res)