app.py 34 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967
  1. # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from flask import Flask, request, render_template, send_from_directory, jsonify, session, send_file
  15. from werkzeug.utils import secure_filename
  16. from flask_cors import CORS
  17. import argparse
  18. from os import path as osp
  19. import os
  20. import time
  21. import json
  22. import sys
  23. import multiprocessing as mp
  24. from . import workspace_pb2 as w
  25. from .utils import CustomEncoder, ShareData, is_pic, get_logger, TaskStatus, get_ip
  26. from paddlex_restful.restful.dataset.utils import get_encoding
  27. import numpy as np
  28. app = Flask(__name__)
  29. CORS(app, supports_credentials=True)
  30. SESSION_TYPE = 'filesystem'
  31. app.config.from_object(__name__)
  32. SD = ShareData()
  33. def init(dirname, logger):
  34. #初始化工作空间
  35. from .workspace import init_workspace
  36. from .system import get_system_info
  37. SD.workspace = w.Workspace(path=dirname)
  38. init_workspace(SD.workspace, dirname, logger)
  39. SD.workspace_dir = dirname
  40. get_system_info(SD.machine_info)
  41. @app.errorhandler(Exception)
  42. def handle_exception(e):
  43. ret = {"status": -1, 'message': repr(e)}
  44. return ret
  45. @app.route('/workspace', methods=['GET', 'PUT'])
  46. def workspace():
  47. """
  48. methods=='GET':获取工作目录中项目、数据集、任务的属性
  49. Args:
  50. struct(str):结构类型,可以是'dataset', 'project'或'task',
  51. id(str):结构类型对应的id
  52. attr_list(list):需要获取的属性的列表
  53. Return:
  54. attr(dict):key为属性,value为属性的值,
  55. status
  56. methods=='PUT':修改工作目录中项目、数据集、任务的属性
  57. Args:
  58. struct(str):结构类型,可以是'dataset', 'project'或'task',
  59. id(str):结构类型对应的id
  60. attr_dict(dict):key:需要修改的属性,value:需要修改属性的值
  61. Return:
  62. status
  63. """
  64. data = request.get_json()
  65. if data is None:
  66. data = request.args
  67. if request.method == 'GET':
  68. if data:
  69. from .workspace import get_attr
  70. ret = get_attr(data, SD.workspace)
  71. return ret
  72. return {'status': 1, 'dirname': SD.workspace_dir}
  73. if request.method == 'PUT':
  74. from .workspace import set_attr
  75. ret = set_attr(data, SD.workspace)
  76. return ret
  77. @app.route('/dataset', methods=['GET', 'POST', 'PUT', 'DELETE'])
  78. def dataset():
  79. """
  80. methods=='GET':获取所有数据集或者单个数据集的信息
  81. Args:
  82. did(str, optional):数据集id(可选),如果存在就返回数据集id对应数据集的信息
  83. Ruturn:
  84. status
  85. if 'did' in Args:
  86. id(str):数据集id,
  87. dataset_status(int):数据集状态(DatasetStatus)枚举变量的值
  88. message(str):数据集状态信息
  89. attr(dict):数据集属性
  90. else:
  91. datasets(list):所有数据集属性的列表
  92. methods=='POST':创建一个新的数据集
  93. Args:
  94. name(str):数据集名字
  95. desc(str):数据集描述
  96. dataset_type(str):数据集类型,可以是['classification', 'detection', 'segmentation','instance_segmentation','remote_segmentation']
  97. Return:
  98. did(str):数据集id
  99. status
  100. methods=='PUT':异步,向数据集导入数据,支持分类、检测、语义分割、实例分割、摇杆分割数据集类型
  101. Args:
  102. did(str):数据集id
  103. path(str):数据集路径
  104. Return:
  105. status
  106. methods=='DELETE':删除已有的某个数据集
  107. Args:
  108. did(str):数据集id
  109. Return:
  110. status
  111. """
  112. data = request.get_json()
  113. if data is None:
  114. data = request.args
  115. if request.method == 'GET':
  116. if 'did' in data:
  117. from .dataset.dataset import get_dataset_status
  118. ret = get_dataset_status(data, SD.workspace)
  119. return ret
  120. from .dataset.dataset import list_datasets
  121. ret = list_datasets(SD.workspace)
  122. return ret
  123. if request.method == 'POST':
  124. from .dataset.dataset import create_dataset
  125. ret = create_dataset(data, SD.workspace)
  126. return ret
  127. if request.method == 'PUT':
  128. from .dataset.dataset import import_dataset
  129. ret = import_dataset(data, SD.workspace, SD.monitored_processes,
  130. SD.load_demo_proc_dict)
  131. return ret
  132. if request.method == 'DELETE':
  133. from .dataset.dataset import delete_dataset
  134. ret = delete_dataset(data, SD.workspace)
  135. return ret
  136. @app.route('/dataset/details', methods=['GET'])
  137. def dataset_details():
  138. """
  139. methods=='GET':获取某个数据集的详细信息
  140. Args:
  141. did(str):数据集id
  142. Return:
  143. details(dict):数据集详细信息,
  144. status
  145. """
  146. data = request.get_json()
  147. if data is None:
  148. data = request.args
  149. if request.method == 'GET':
  150. from .dataset.dataset import get_dataset_details
  151. ret = get_dataset_details(data, SD.workspace)
  152. return ret
  153. @app.route('/dataset/split', methods=['PUT'])
  154. def dataset_split():
  155. """
  156. Args:
  157. did(str):数据集id
  158. val_split(float): 验证集比例
  159. test_split(float): 测试集比例
  160. Return:
  161. status
  162. """
  163. data = request.get_json()
  164. if request.method == 'PUT':
  165. from .dataset.dataset import split_dataset
  166. ret = split_dataset(data, SD.workspace)
  167. return ret
  168. @app.route('/dataset/image', methods=['GET'])
  169. def dataset_img_base64():
  170. """
  171. Args:
  172. GET: 获取图片base64数据,参数:'path' 图片绝对路径
  173. """
  174. data = request.get_json()
  175. if request.method == 'GET':
  176. from .dataset.dataset import img_base64
  177. ret = img_base64(data)
  178. return ret
  179. @app.route('/dataset/file', methods=['GET'])
  180. def get_image_file():
  181. """
  182. Args:
  183. GET: 获取文件数据,参数:'path' 文件绝对路径
  184. """
  185. data = request.get_json()
  186. if request.method == 'GET':
  187. ret = data['path']
  188. return send_file(ret)
  189. @app.route('/dataset/npy', methods=['GET'])
  190. def get_npyfile():
  191. """
  192. Args:
  193. GET: 获取文件数据,参数:'path' npy文件绝对路径
  194. """
  195. data = request.get_json()
  196. if request.method == 'GET':
  197. npy = np.load(data['path'], allow_pickle=True).tolist()
  198. npy['gt_bbox'] = npy['gt_bbox'].tolist()
  199. return npy
  200. @app.route('/file', methods=['GET'])
  201. def get_file():
  202. """
  203. Args:
  204. path'(str):文件在服务端的路径
  205. Return:
  206. #数据为图片
  207. img_data(str): base64图片数据
  208. status
  209. #数据为xml文件
  210. ret:数据流
  211. #数据为log文件
  212. ret:json数据
  213. """
  214. data = request.get_json()
  215. if data is None:
  216. data = request.args
  217. if request.method == 'GET':
  218. path = data['path']
  219. if not os.path.exists(path):
  220. return {'status': -1}
  221. if is_pic(path):
  222. from .dataset.dataset import img_base64
  223. ret = img_base64(data, SD.workspace)
  224. return ret
  225. file_type = path[(path.rfind('.') + 1):]
  226. if file_type in ['xml', 'npy', 'log']:
  227. return send_file(path)
  228. else:
  229. pass
  230. @app.route('/project', methods=['GET', 'POST', 'DELETE'])
  231. def project():
  232. """
  233. methods=='GET':获取指定项目id的信息
  234. Args:
  235. 'id'(str, optional):项目id,可选,如果存在就返回项目id对应项目的信息
  236. Return:
  237. status,
  238. if 'id' in Args:
  239. attr(dict):项目属性
  240. else:
  241. projects(list):所有项目属性
  242. methods=='POST':创建一个项目
  243. Args:
  244. name(str): 项目名
  245. desc(str):项目描述
  246. project_type(str):项目类型
  247. Return:
  248. pid(str):项目id
  249. status
  250. methods=='DELETE':删除一个项目,以及项目相关的task
  251. Args:
  252. pid(str):项目id
  253. Return:
  254. status
  255. """
  256. data = request.get_json()
  257. if data is None:
  258. data = request.args
  259. if request.method == 'GET':
  260. from .project.project import list_projects
  261. from .project.project import get_project
  262. if 'id' in data:
  263. ret = get_project(data, SD.workspace)
  264. return ret
  265. ret = list_projects(SD.workspace)
  266. return ret
  267. if request.method == 'POST':
  268. from .project.project import create_project
  269. ret = create_project(data, SD.workspace)
  270. return ret
  271. if request.method == 'DELETE':
  272. from .project.project import delete_project
  273. ret = delete_project(data, SD.workspace)
  274. return ret
  275. @app.route('/project/task', methods=['GET', 'POST', 'DELETE'])
  276. def task():
  277. """
  278. methods=='GET':#获取某个任务的信息或者所有任务的信息
  279. Args:
  280. tid(str, optional):任务id,可选,若存在即返回id对应任务的信息
  281. resume(str, optional):获取是否可以恢复训练的状态,可选,需在存在tid的情况下才生效
  282. pid(str, optional):项目id,可选,若存在即返回该项目id下所有任务信息
  283. Return:
  284. status
  285. if 'tid' in Args:
  286. task_status(int):任务状态(TaskStatus)枚举变量的值
  287. message(str):任务状态信息
  288. type:任务类型包括{'classification', 'detection', 'segmentation', 'instance_segmentation'}
  289. resumable(bool):仅Args中存在resume时返回,任务训练是否可以恢复
  290. max_saved_epochs(int):仅Args中存在resume时返回,当前训练模型保存的最大epoch
  291. else:
  292. tasks(list):所有任务属性
  293. methods=='POST':#创建任务(训练或者裁剪)
  294. Args:
  295. pid(str):项目id
  296. train(dict):训练参数
  297. desc(str, optional):任务描述,可选
  298. parent_id(str, optional):可选,若存在即表示新建的任务为裁剪任务,parent_id的值为裁剪任务对应的训练任务id
  299. Return:
  300. tid(str):任务id
  301. status
  302. methods=='DELETE':#删除任务
  303. Args:
  304. tid(str):任务id
  305. Return:
  306. status
  307. """
  308. data = request.get_json()
  309. if data is None:
  310. data = request.args
  311. if request.method == 'GET':
  312. if data:
  313. if 'pid' not in data:
  314. from .project.task import get_task_status
  315. ret = get_task_status(data, SD.workspace)
  316. return ret
  317. from .project.task import list_tasks
  318. ret = list_tasks(data, SD.workspace)
  319. return ret
  320. if request.method == 'POST':
  321. from .project.task import create_task
  322. ret = create_task(data, SD.workspace)
  323. return ret
  324. if request.method == 'DELETE':
  325. from .project.task import delete_task
  326. ret = delete_task(data, SD.workspace)
  327. return ret
  328. @app.route('/project/task/params', methods=['GET', 'POST'])
  329. def task_params():
  330. """
  331. methods=='GET':#获取任务id对应的参数,或者获取项目默认参数
  332. Args:
  333. tid(str, optional):获取任务对应的参数
  334. pid(str,optional):获取项目对应的默认参数
  335. model_type(str,optional):pid存在下有效,对应项目下获取指定模型的默认参数
  336. gpu_list(list,optional):pid存在下有效,默认值为[0],使用指定的gpu并获取相应的默认参数
  337. Return:
  338. train(dict):训练或者裁剪的参数
  339. status
  340. methods=='POST':#设置任务参数,将前端用户设置训练参数dict保存在后端的pkl文件中
  341. Args:
  342. tid(str):任务id
  343. train(dict):训练参数
  344. Return:
  345. status
  346. """
  347. data = request.get_json()
  348. if data is None:
  349. data = request.args
  350. if request.method == 'GET':
  351. if 'tid' in data:
  352. from .project.task import get_task_params
  353. ret = get_task_params(data, SD.workspace)
  354. ret['train'] = CustomEncoder().encode(ret['train'])
  355. ret['train'] = json.loads(ret['train'])
  356. return ret
  357. if 'pid' in data:
  358. from .project.task import get_default_params
  359. ret = get_default_params(data, SD.workspace, SD.machine_info)
  360. return ret
  361. if request.method == 'POST':
  362. from .project.task import set_task_params
  363. ret = set_task_params(data, SD.workspace)
  364. return ret
  365. @app.route('/project/task/metrics', methods=['GET'])
  366. def task_metrics():
  367. """
  368. methods=='GET':#获取日志数据
  369. Args:
  370. tid(str):任务id
  371. type(str):可以获取日志的类型,[train,eval,sensitivities,prune],包括训练,评估,敏感度与模型裁剪率关系图,裁剪的日志
  372. Return:
  373. status
  374. if type == 'train':
  375. train_log(dict): 训练日志
  376. elif type == 'eval':
  377. eval_metrics(dict): 评估结果
  378. elif type == 'sensitivities':
  379. sensitivities_loss_img(dict): 敏感度与模型裁剪率关系图
  380. elif type == 'prune':
  381. prune_log(dict):裁剪日志
  382. """
  383. data = request.get_json()
  384. if data is None:
  385. data = request.args
  386. if request.method == 'GET':
  387. if data['type'] == 'train':
  388. from .project.task import get_train_metrics
  389. ret = get_train_metrics(data, SD.workspace)
  390. return ret
  391. if data['type'] == 'eval':
  392. from .project.task import get_eval_metrics
  393. ret = get_eval_metrics(data, SD.workspace)
  394. return ret
  395. if data['type'] == 'eval_all':
  396. from .project.task import get_eval_all_metrics
  397. ret = get_eval_all_metrics(data, SD.workspace)
  398. return ret
  399. if data['type'] == 'sensitivities':
  400. from .project.task import get_sensitivities_loss_img
  401. ret = get_sensitivities_loss_img(data, SD.workspace)
  402. return ret
  403. if data['type'] == 'prune':
  404. from .project.task import get_prune_metrics
  405. ret = get_prune_metrics(data, SD.workspace)
  406. return ret
  407. @app.route('/project/task/train', methods=['POST', 'PUT'])
  408. def task_train():
  409. """
  410. methods=='POST':#异步,启动训练或者裁剪任务
  411. Args:
  412. tid(str):任务id
  413. eval_metric_loss(int,optional):可选,裁剪任务时可用,裁剪任务所需的评估loss
  414. Return:
  415. status
  416. methods=='PUT':#改变任务训练的状态,即终止训练或者恢复训练
  417. Args:
  418. tid(str):任务id
  419. act(str):[stop,resume]暂停或者恢复
  420. epoch(int):(resume下可以设置)恢复训练的起始轮数
  421. Return:
  422. status
  423. """
  424. data = request.get_json()
  425. if request.method == 'POST':
  426. from .project.task import start_train_task
  427. ret = start_train_task(data, SD.workspace, SD.monitored_processes)
  428. return ret
  429. if request.method == 'PUT':
  430. if data['act'] == 'resume':
  431. from .project.task import resume_train_task
  432. ret = resume_train_task(data, SD.workspace, SD.monitored_processes)
  433. return ret
  434. if data['act'] == 'stop':
  435. from .project.task import stop_train_task
  436. ret = stop_train_task(data, SD.workspace)
  437. return ret
  438. @app.route('/project/task/train/file', methods=['GET'])
  439. def log_file():
  440. data = request.get_json()
  441. if request.method == 'GET':
  442. path = data['path']
  443. if not os.path.exists(path):
  444. return {'status': -1}
  445. logs = open(path, encoding='utf-8').readlines()
  446. if len(logs) < 50:
  447. return {'status': 1, 'log': logs}
  448. else:
  449. logs = logs[-50:]
  450. return {'status': 1, 'log': logs}
  451. @app.route('/project/task/prune', methods=['GET', 'POST', 'PUT'])
  452. def task_prune():
  453. """
  454. methods=='GET':#获取裁剪任务的状态
  455. Args:
  456. tid(str):任务id
  457. Return:
  458. prune_status(int): 裁剪任务状态(PruneStatus)枚举变量的值
  459. status
  460. methods=='POST':#异步,创建一个裁剪分析,对于启动裁剪任务前需要先启动裁剪分析
  461. Args:
  462. tid(str):任务id
  463. Return:
  464. status
  465. methods=='PUT':#改变裁剪分析任务的状态
  466. Args:
  467. tid(str):任务id
  468. act(str):[stop],目前仅支持停止一个裁剪分析任务
  469. Return
  470. status
  471. """
  472. data = request.get_json()
  473. if data is None:
  474. data = request.args
  475. if request.method == 'GET':
  476. from .project.task import get_prune_status
  477. ret = get_prune_status(data, SD.workspace)
  478. return ret
  479. if request.method == 'POST':
  480. from .project.task import start_prune_analysis
  481. ret = start_prune_analysis(data, SD.workspace, SD.monitored_processes)
  482. return ret
  483. if request.method == 'PUT':
  484. if data['act'] == 'stop':
  485. from .project.task import stop_prune_analysis
  486. ret = stop_prune_analysis(data, SD.workspace)
  487. return ret
  488. @app.route('/project/task/evaluate', methods=['GET', 'POST'])
  489. def task_evaluate():
  490. '''
  491. methods=='GET':#获取模型评估的结果
  492. Args:
  493. tid(str):任务id
  494. Return:
  495. evaluate_status(int): 任务状态(TaskStatus)枚举变量的值
  496. message(str):描述评估任务的信息
  497. result(dict):如果评估成功,返回评估结果的dict,否则为None
  498. status
  499. methods=='POST':#异步,创建一个评估任务
  500. Args:
  501. tid(str):任务id
  502. epoch(int,optional):需要评估的epoch,如果为None则会评估训练时指标最好的epoch
  503. topk(int,optional):分类任务topk指标,如果为None默认输入为5
  504. score_thresh(float):检测任务类别的score threshhold值,如果为None默认输入为0.5
  505. overlap_thresh(float):实例分割任务IOU threshhold值,如果为None默认输入为0.3
  506. Return:
  507. status
  508. '''
  509. data = request.get_json()
  510. if data is None:
  511. data = request.args
  512. if request.method == 'GET':
  513. from .project.task import get_evaluate_result
  514. ret = get_evaluate_result(data, SD.workspace)
  515. if ret['evaluate_status'] == TaskStatus.XEVALUATED and ret[
  516. 'result'] is not None:
  517. if 'Confusion_Matrix' in ret['result']:
  518. ret['result']['Confusion_Matrix'] = ret['result'][
  519. 'Confusion_Matrix'].tolist()
  520. ret['result'] = CustomEncoder().encode(ret['result'])
  521. ret['result'] = json.loads(ret['result'])
  522. ret['evaluate_status'] = ret['evaluate_status'].value
  523. return ret
  524. if request.method == 'POST':
  525. from .project.task import evaluate_model
  526. ret = evaluate_model(data, SD.workspace, SD.monitored_processes)
  527. return ret
  528. @app.route('/project/task/evaluate/file', methods=['GET'])
  529. def task_evaluate_file():
  530. data = request.get_json()
  531. if request.method == 'GET':
  532. if 'path' in data:
  533. ret = data['path']
  534. return send_file(ret)
  535. else:
  536. from .project.task import get_evaluate_result
  537. from .project.task import import_evaluate_excel
  538. ret = get_evaluate_result(data, SD.workspace)
  539. if ret['evaluate_status'] == TaskStatus.XEVALUATED and ret[
  540. 'result'] is not None:
  541. result = ret['result']
  542. excel_ret = dict()
  543. excel_ret = import_evaluate_excel(data, result, SD.workspace)
  544. return excel_ret
  545. else:
  546. excel_ret = dict()
  547. excel_ret['path'] = None
  548. excel_ret['status'] = -1
  549. excel_ret['message'] = "评估尚未完成或评估失败"
  550. return excel_ret
  551. @app.route('/project/task/predict', methods=['GET', 'POST', 'PUT'])
  552. def task_predict():
  553. '''
  554. methods=='GET':#获取预测状态
  555. Args:
  556. tid(str):任务id
  557. Return:
  558. predict_status(int): 预测任务状态(PredictStatus)枚举变量的值
  559. message(str): 预测信息
  560. status
  561. methods=='POST':#创建预测任务,目前仅支持单张图片的预测
  562. Args:
  563. tid(str):任务id
  564. image_data(str):base64编码的image数据
  565. score_thresh(float,optional):可选,检测任务时有效,检测类别的score threashold值默认是0.5
  566. epoch(int,float,optional):可选,选择需要做预测的ephoch,默认为评估指标最好的那一个epoch
  567. Return:
  568. path(str):服务器上保存预测结果图片的路径
  569. status
  570. '''
  571. data = request.get_json()
  572. if data is None:
  573. data = request.args
  574. if request.method == 'GET':
  575. from .project.task import get_predict_status
  576. ret = get_predict_status(data, SD.workspace)
  577. return ret
  578. if request.method == 'POST':
  579. from .project.task import predict_test_pics
  580. ret = predict_test_pics(data, SD.workspace, SD.monitored_processes)
  581. if 'img_list' in data:
  582. del ret['path']
  583. return ret
  584. return ret
  585. if request.method == 'PUT':
  586. from .project.task import stop_predict_task
  587. ret = stop_predict_task(data, SD.workspace)
  588. return ret
  589. @app.route('/project/task/export', methods=['GET', 'POST', 'PUT'])
  590. def task_export():
  591. '''
  592. methods=='GET':#获取导出模型的状态
  593. Args:
  594. tid(str):任务id
  595. quant(str,optional)可选,[log,result],导出量模型导出状态,若值为log则返回量化的日志;若值为result则返回量化的结果
  596. Return:
  597. status
  598. if quant == 'log':
  599. quant_log(dict):量化日志
  600. if quant == 'result'
  601. quant_result(dict):量化结果
  602. if quant not in Args:
  603. export_status(int):模型导出状态(PredictStatus)枚举变量的值
  604. message(str):模型导出提示信息
  605. methods=='POST':#导出inference模型或者导出lite模型
  606. Args:
  607. tid(str):任务id
  608. type(str):保存模型的类别[infer,lite],支持inference模型导出和lite的模型导出
  609. save_dir(str):保存模型的路径
  610. epoch(str,optional)可选,指定导出的epoch数默认为评估效果最好的epoch
  611. quant(bool,optional)可选,type为infer有效,是否导出量化后的模型,默认为False
  612. model_path(str,optional)可选,type为lite时有效,inference模型的地址
  613. Return:
  614. status
  615. if type == 'infer':
  616. save_dir:模型保存路径
  617. if type == 'lite':
  618. message:模型保存信息
  619. methods=='PUT':#停止导出模型
  620. Args:
  621. tid(str):任务id
  622. Return:
  623. export_status(int):模型导出状态(PredictStatus)枚举变量的值
  624. message(str):停止模型导出提示信息
  625. status
  626. '''
  627. data = request.get_json()
  628. if data is None:
  629. data = request.args
  630. if request.method == 'GET':
  631. if 'quant' in data:
  632. if data['quant'] == 'log':
  633. from .project.task import get_quant_progress
  634. ret = get_quant_progress(data, SD.workspace)
  635. return ret
  636. if data['quant'] == 'result':
  637. from .project.task import get_quant_result
  638. ret = get_quant_result(data, SD.workspace)
  639. return ret
  640. from .project.task import get_export_status
  641. ret = get_export_status(data, SD.workspace)
  642. ret['export_status'] = ret['export_status'].value
  643. return ret
  644. if request.method == 'POST':
  645. if data['type'] == 'infer':
  646. from .project.task import export_infer_model
  647. ret = export_infer_model(data, SD.workspace,
  648. SD.monitored_processes)
  649. return ret
  650. if data['type'] == 'lite':
  651. from .project.task import export_lite_model
  652. ret = export_lite_model(data, SD.workspace)
  653. return ret
  654. if request.method == 'PUT':
  655. from .project.task import stop_export_task
  656. stop_export_task(data, SD.workspace)
  657. return ret
  658. @app.route('/project/task/vdl', methods=['GET'])
  659. def task_vdl():
  660. '''
  661. methods=='GET':#打开某个任务的可视化分析工具(VisualDL)
  662. Args:
  663. tid(str):任务id
  664. Return:
  665. url(str):vdl地址
  666. status
  667. '''
  668. data = request.get_json()
  669. if data is None:
  670. data = request.args
  671. if request.method == 'GET':
  672. from .project.task import open_vdl
  673. ret = open_vdl(data, SD.workspace, SD.current_port,
  674. SD.monitored_processes, SD.running_boards)
  675. return ret
  676. @app.route('/system', methods=['GET', 'DELETE'])
  677. def system():
  678. '''
  679. methods=='GET':#获取系统GPU、CPU信息
  680. Args:
  681. type(str):[machine_info,gpu_memory_size]选择需要获取的系统信息
  682. Return:
  683. status
  684. if type=='machine_info'
  685. info(dict):服务端信息
  686. if type=='gpu_memory_size'
  687. gpu_mem_infos(list):GPU内存信息
  688. '''
  689. data = request.get_json()
  690. if data is None:
  691. data = request.args
  692. if request.method == 'GET':
  693. if data['type'] == 'machine_info':
  694. '''if 'path' not in data:
  695. data['path'] = None
  696. from .system import get_machine_info
  697. ret = get_machine_info(data, SD.machine_info)'''
  698. from .system import get_system_info
  699. ret = get_system_info(SD.machine_info)
  700. return ret
  701. if data['type'] == 'gpu_memory_size':
  702. #from .system import get_gpu_memory_size
  703. from .system import get_gpu_memory_info
  704. ret = get_gpu_memory_info(SD.machine_info)
  705. return ret
  706. if request.method == 'DELETE':
  707. from .system import exit_system
  708. ret = exit_system(SD.monitored_processes)
  709. return ret
  710. @app.route('/demo', methods=['GET', 'POST', 'PUT'])
  711. def demo():
  712. '''
  713. methods=='GET':#获取demo下载进度
  714. Args:
  715. prj_type(int):项目类型ProjectType枚举变量的int值
  716. Return:
  717. status
  718. attr(dict):demo下载信息
  719. methods=='POST':#下载或创建demo工程
  720. Args:
  721. type(str):{download,load}下载或者创建样例
  722. prj_type(int):项目类型ProjectType枚举变量的int值
  723. Return:
  724. status
  725. if type=='load':
  726. did:数据集id
  727. pid:项目id
  728. methods=='PUT':#停止下载或创建demo工程
  729. Args:
  730. prj_type(int):项目类型ProjectType枚举变量的int值
  731. Return:
  732. status
  733. '''
  734. data = request.get_json()
  735. if data is None:
  736. data = request.args
  737. if request.method == 'GET':
  738. from .demo import get_download_demo_progress
  739. ret = get_download_demo_progress(data, SD.workspace)
  740. return ret
  741. if request.method == 'POST':
  742. if data['type'] == 'download':
  743. from .demo import download_demo_dataset
  744. ret = download_demo_dataset(data, SD.workspace,
  745. SD.load_demo_proc_dict)
  746. return ret
  747. if data['type'] == 'load':
  748. from .demo import load_demo_project
  749. ret = load_demo_project(data, SD.workspace, SD.monitored_processes,
  750. SD.load_demo_proj_data_dict,
  751. SD.load_demo_proc_dict)
  752. return ret
  753. if request.method == 'PUT':
  754. from .demo import stop_import_demo
  755. ret = stop_import_demo(data, SD.workspace, SD.load_demo_proc_dict,
  756. SD.load_demo_proj_data_dict)
  757. return ret
  758. @app.route('/model', methods=['GET', 'POST', 'DELETE'])
  759. def model():
  760. '''
  761. methods=='GET':#获取一个或者所有模型的信息
  762. Args:
  763. mid(str,optional)可选,若存在则返回某个模型的信息
  764. type(str,optional)可选,[pretrained,exported].若存在则返回对应类型下所有的模型信息
  765. Return:
  766. status
  767. if mid in Args:
  768. dataset_attr(dict):数据集属性
  769. task_params(dict):模型训练参数
  770. eval_result(dict):模型评估结果
  771. if type in Args and type == 'pretrained':
  772. pretrained_models(list):所有预训练模型信息
  773. if type in Args and type == 'exported':
  774. exported_models(list):所有inference模型的信息
  775. methods=='POST':#创建一个模型
  776. Args:
  777. pid(str):项目id
  778. tid(str):任务id
  779. name(str):模型名字
  780. type(str):创建模型的类型,[pretrained,exported],pretrained代表创建预训练模型、exported代表创建inference或者lite模型
  781. source_path(str):仅type为pretrained时有效,训练好的模型的路径
  782. path(str):仅type为exported时有效,inference或者lite模型的路径
  783. exported_type(int):0为inference模型,1为lite模型
  784. eval_results(dict,optional):可选,仅type为pretrained时有效,模型评估的指标
  785. Return:
  786. status
  787. if type == 'pretrained':
  788. pmid(str):预训练模型id
  789. if type == 'exported':
  790. emid(str):inference模型id
  791. methods=='DELETE':删除一个模型
  792. Args:
  793. type(str):删除模型的类型,[pretrained,exported],pretrained代表创建预训练模型、exported代表创建inference或者lite模型
  794. if type='pretrained':
  795. pmid:预训练模型id
  796. if type='exported':
  797. emid:inference或者lite模型id
  798. Return:
  799. status
  800. '''
  801. data = request.get_json()
  802. if data is None:
  803. data = request.args
  804. if request.method == 'GET':
  805. if 'type' in data:
  806. if data['type'] == 'pretrained':
  807. from .model import list_pretrained_models
  808. ret = list_pretrained_models(SD.workspace)
  809. return ret
  810. if data['type'] == 'exported':
  811. from .model import list_exported_models
  812. ret = list_exported_models(SD.workspace)
  813. return ret
  814. from .model import get_model_details
  815. ret = get_model_details(data, SD.workspace)
  816. ret['eval_result']['Confusion_Matrix'] = ret['eval_result'][
  817. 'Confusion_Matrix'].tolist()
  818. ret['eval_result'] = CustomEncoder().encode(ret['eval_result'])
  819. ret['task_params'] = CustomEncoder().encode(ret['task_params'])
  820. return ret
  821. if request.method == 'POST':
  822. if data['type'] == 'pretrained':
  823. if 'eval_results' in data:
  824. data['eval_results']['Confusion_Matrix'] = np.array(data[
  825. 'eval_results']['Confusion_Matrix'])
  826. from .model import create_pretrained_model
  827. ret = create_pretrained_model(data, SD.workspace,
  828. SD.monitored_processes)
  829. return ret
  830. if data['type'] == 'exported':
  831. from .model import create_exported_model
  832. ret = create_exported_model(data, SD.workspace)
  833. return ret
  834. if request.method == 'DELETE':
  835. if data['type'] == 'pretrained':
  836. from .model import delete_pretrained_model
  837. ret = delete_pretrained_model(data, SD.workspace)
  838. return ret
  839. if data['type'] == 'exported':
  840. from .model import delete_exported_model
  841. ret = delete_exported_model(data, SD.workspace)
  842. return ret
  843. @app.route('/model/file', methods=['GET'])
  844. def model_file():
  845. data = request.get_json()
  846. if request.method == 'GET':
  847. ret = data['path']
  848. return send_file(ret)
  849. @app.route('/', methods=['GET'])
  850. def gui():
  851. if request.method == 'GET':
  852. file_path = osp.join(
  853. osp.dirname(__file__), 'templates', 'paddlex_restful_demo.html')
  854. ip = get_ip()
  855. url = 'var str_srv_url = "http://' + ip + ':' + str(SD.port) + '";'
  856. f = open(file_path, 'r+', encoding=get_encoding(file_path))
  857. lines = f.readlines()
  858. for i, line in enumerate(lines):
  859. if '0.0.0.0:8080' in line:
  860. lines[i] = url
  861. break
  862. f.close()
  863. f = open(file_path, 'w+', encoding=get_encoding(file_path))
  864. f.writelines(lines)
  865. f.close()
  866. return render_template('/paddlex_restful_demo.html')
  867. def run(port, workspace_dir):
  868. if workspace_dir is None:
  869. user_home = os.path.expanduser('~')
  870. dirname = osp.join(user_home, "paddlex_workspace")
  871. else:
  872. dirname = workspace_dir
  873. if not osp.exists(dirname):
  874. os.makedirs(dirname)
  875. else:
  876. if not osp.isdir(dirname):
  877. os.remove(dirname)
  878. os.makedirs(dirname)
  879. logger = get_logger(osp.join(dirname, "mcessages.log"))
  880. init(dirname, logger)
  881. SD.port = port
  882. ip = get_ip()
  883. url = ip + ':' + str(port)
  884. try:
  885. logger.info("RESTful服务启动成功后,您可以在浏览器打开 {} 使用WEB版本GUI".format(url))
  886. app.run(host='0.0.0.0', port=port, threaded=True)
  887. except:
  888. print("服务启动不成功,请确保端口号:{}未被防火墙限制".format(port))