classifier.py 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745
  1. # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from __future__ import absolute_import
  15. import math
  16. import os.path as osp
  17. from collections import OrderedDict
  18. import numpy as np
  19. import paddle
  20. from paddle import to_tensor
  21. import paddle.nn.functional as F
  22. from paddle.static import InputSpec
  23. from paddlex.utils import logging, TrainingStats, DisablePrint
  24. from paddlex.cv.models.base import BaseModel
  25. from paddlex.cv.transforms import arrange_transforms
  26. with DisablePrint():
  27. from PaddleClas.ppcls.modeling import architectures
  28. from PaddleClas.ppcls.modeling.loss import CELoss
  29. __all__ = [
  30. "ResNet18", "ResNet34", "ResNet50", "ResNet101", "ResNet152",
  31. "ResNet18_vd", "ResNet34_vd", "ResNet50_vd", "ResNet50_vd_ssld",
  32. "ResNet101_vd", "ResNet101_vd_ssld", "ResNet152_vd", "ResNet200_vd",
  33. "AlexNet", "DarkNet53", "MobileNetV1", "MobileNetV2", "MobileNetV3_small",
  34. "MobileNetV3_small_ssld", "MobileNetV3_large", "MobileNetV3_large_ssld",
  35. "DenseNet121", "DenseNet161", "DenseNet169", "DenseNet201", "DenseNet264",
  36. "HRNet_W18_C", "HRNet_W30_C", "HRNet_W32_C", "HRNet_W40_C", "HRNet_W44_C",
  37. "HRNet_W48_C", "HRNet_W64_C", "Xception41", "Xception65", "Xception71",
  38. "ShuffleNetV2", "ShuffleNetV2_swish"
  39. ]
  40. class BaseClassifier(BaseModel):
  41. """Parent class of all classification models.
  42. Args:
  43. model_name (str, optional): Name of classification model. Defaults to 'ResNet50'.
  44. num_classes (int, optional): The number of target classes. Defaults to 1000.
  45. """
  46. def __init__(self, model_name='ResNet50', num_classes=1000, **params):
  47. self.init_params = locals()
  48. self.init_params.update(params)
  49. del self.init_params['params']
  50. super(BaseClassifier, self).__init__('classifier')
  51. if not hasattr(architectures, model_name):
  52. raise Exception("ERROR: There's no model named {}.".format(
  53. model_name))
  54. self.model_name = model_name
  55. self.labels = None
  56. self.num_classes = num_classes
  57. for k, v in params.items():
  58. setattr(self, k, v)
  59. self.net = self.build_net(**params)
  60. def build_net(self, **params):
  61. with paddle.utils.unique_name.guard():
  62. net = architectures.__dict__[self.model_name](
  63. class_dim=self.num_classes, **params)
  64. return net
  65. def get_test_inputs(self, image_shape):
  66. input_spec = [
  67. InputSpec(
  68. shape=[None, 3] + image_shape, name='image', dtype='float32')
  69. ]
  70. return input_spec
  71. def run(self, net, inputs, mode):
  72. net_out = net(inputs[0])
  73. softmax_out = F.softmax(net_out)
  74. if mode == 'test':
  75. outputs = OrderedDict([('prediction', softmax_out)])
  76. elif mode == 'eval':
  77. labels = to_tensor(inputs[1].numpy().astype('int64').reshape(-1,
  78. 1))
  79. acc1 = paddle.metric.accuracy(softmax_out, label=labels)
  80. k = min(5, self.num_classes)
  81. acck = paddle.metric.accuracy(softmax_out, label=labels, k=k)
  82. # multi cards eval
  83. if paddle.distributed.get_world_size() > 1:
  84. acc1 = paddle.distributed.all_reduce(
  85. acc1, op=paddle.distributed.ReduceOp.
  86. SUM) / paddle.distributed.get_world_size()
  87. acck = paddle.distributed.all_reduce(
  88. acck, op=paddle.distributed.ReduceOp.
  89. SUM) / paddle.distributed.get_world_size()
  90. outputs = OrderedDict([('acc1', acc1), ('acc{}'.format(k), acck),
  91. ('prediction', softmax_out)])
  92. else:
  93. # mode == 'train'
  94. labels = to_tensor(inputs[1].numpy().astype('int64').reshape(-1,
  95. 1))
  96. loss = CELoss(class_dim=self.num_classes)
  97. loss = loss(net_out, inputs[1])
  98. acc1 = paddle.metric.accuracy(softmax_out, label=labels, k=1)
  99. k = min(5, self.num_classes)
  100. acck = paddle.metric.accuracy(softmax_out, label=labels, k=k)
  101. outputs = OrderedDict([('loss', loss), ('acc1', acc1),
  102. ('acc{}'.format(k), acck)])
  103. return outputs
  104. def default_optimizer(self, parameters, learning_rate, warmup_steps,
  105. warmup_start_lr, lr_decay_epochs, lr_decay_gamma,
  106. num_steps_each_epoch):
  107. boundaries = [b * num_steps_each_epoch for b in lr_decay_epochs]
  108. values = [
  109. learning_rate * (lr_decay_gamma**i)
  110. for i in range(len(lr_decay_epochs) + 1)
  111. ]
  112. scheduler = paddle.optimizer.lr.PiecewiseDecay(boundaries, values)
  113. if warmup_steps > 0:
  114. if warmup_steps > lr_decay_epochs[0] * num_steps_each_epoch:
  115. logging.error(
  116. "In function train(), parameters should satisfy: "
  117. "warmup_steps <= lr_decay_epochs[0]*num_samples_in_train_dataset",
  118. exit=False)
  119. logging.error(
  120. "See this doc for more information: "
  121. "https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/appendix/parameters.md#notice",
  122. exit=False)
  123. logging.error(
  124. "warmup_steps should less than {} or lr_decay_epochs[0] greater than {}, "
  125. "please modify 'lr_decay_epochs' or 'warmup_steps' in train function".
  126. format(lr_decay_epochs[0] * num_steps_each_epoch,
  127. warmup_steps // num_steps_each_epoch))
  128. scheduler = paddle.optimizer.lr.LinearWarmup(
  129. learning_rate=scheduler,
  130. warmup_steps=warmup_steps,
  131. start_lr=warmup_start_lr,
  132. end_lr=learning_rate)
  133. optimizer = paddle.optimizer.Momentum(
  134. scheduler,
  135. momentum=.9,
  136. weight_decay=paddle.regularizer.L2Decay(coeff=1e-04),
  137. parameters=parameters)
  138. return optimizer
  139. def train(self,
  140. num_epochs,
  141. train_dataset,
  142. train_batch_size=64,
  143. eval_dataset=None,
  144. optimizer=None,
  145. save_interval_epochs=1,
  146. log_interval_steps=10,
  147. save_dir='output',
  148. pretrain_weights='IMAGENET',
  149. learning_rate=.025,
  150. warmup_steps=0,
  151. warmup_start_lr=0.0,
  152. lr_decay_epochs=(30, 60, 90),
  153. lr_decay_gamma=0.1,
  154. early_stop=False,
  155. early_stop_patience=5,
  156. use_vdl=True):
  157. """
  158. Train the model.
  159. Args:
  160. num_epochs(int): The number of epochs.
  161. train_dataset(paddlex.dataset): Training dataset.
  162. train_batch_size(int, optional): Total batch size among all cards used in training. Defaults to 64.
  163. eval_dataset(paddlex.dataset, optional):
  164. Evaluation dataset. If None, the model will not be evaluated during training process. Defaults to None.
  165. optimizer(paddle.optimizer.Optimizer or None, optional):
  166. Optimizer used for training. If None, a default optimizer is used. Defaults to None.
  167. save_interval_epochs(int, optional): Epoch interval for saving the model. Defaults to 1.
  168. log_interval_steps(int, optional): Step interval for printing training information. Defaults to 10.
  169. save_dir(str, optional): Directory to save the model. Defaults to 'output'.
  170. pretrain_weights(str or None, optional):
  171. None or name/path of pretrained weights. If None, no pretrained weights will be loaded. Defaults to 'IMAGENET'.
  172. learning_rate(float, optional): Learning rate for training. Defaults to .025.
  173. warmup_steps(int, optional): The number of steps of warm-up training. Defaults to 0.
  174. warmup_start_lr(float, optional): Start learning rate of warm-up training. Defaults to 0..
  175. lr_decay_epochs(List[int] or Tuple[int], optional):
  176. Epoch milestones for learning rate decay. Defaults to (20, 60, 90).
  177. lr_decay_gamma(float, optional): Gamma coefficient of learning rate decay, default .1.
  178. early_stop(bool, optional): Whether to adopt early stop strategy. Defaults to False.
  179. early_stop_patience(int, optional): Early stop patience. Defaults to 5.
  180. use_vdl(bool, optional): Whether to use VisualDL to monitor the training process. Defaults to True.
  181. """
  182. self.labels = train_dataset.labels
  183. # build optimizer if not defined
  184. if optimizer is None:
  185. num_steps_each_epoch = len(train_dataset) // train_batch_size
  186. self.optimizer = self.default_optimizer(
  187. parameters=self.net.parameters(),
  188. learning_rate=learning_rate,
  189. warmup_steps=warmup_steps,
  190. warmup_start_lr=warmup_start_lr,
  191. lr_decay_epochs=lr_decay_epochs,
  192. lr_decay_gamma=lr_decay_gamma,
  193. num_steps_each_epoch=num_steps_each_epoch)
  194. else:
  195. self.optimizer = optimizer
  196. # initiate weights
  197. if pretrain_weights is not None and not osp.exists(pretrain_weights):
  198. if pretrain_weights not in ['IMAGENET']:
  199. logging.warning(
  200. "Path of pretrain_weights('{}') does not exist!".format(
  201. pretrain_weights))
  202. logging.warning(
  203. "Pretrain_weights is forcibly set to 'IMAGENET'. "
  204. "If don't want to use pretrain weights, "
  205. "set pretrain_weights to be None.")
  206. pretrain_weights = 'IMAGENET'
  207. pretrained_dir = osp.join(save_dir, 'pretrain')
  208. self.net_initialize(
  209. pretrain_weights=pretrain_weights, save_dir=pretrained_dir)
  210. # start train loop
  211. self.train_loop(
  212. num_epochs=num_epochs,
  213. train_dataset=train_dataset,
  214. train_batch_size=train_batch_size,
  215. eval_dataset=eval_dataset,
  216. save_interval_epochs=save_interval_epochs,
  217. log_interval_steps=log_interval_steps,
  218. save_dir=save_dir,
  219. early_stop=early_stop,
  220. early_stop_patience=early_stop_patience,
  221. use_vdl=use_vdl)
  222. def quant_aware_train(self,
  223. num_epochs,
  224. train_dataset,
  225. train_batch_size=64,
  226. eval_dataset=None,
  227. optimizer=None,
  228. save_interval_epochs=1,
  229. log_interval_steps=10,
  230. save_dir='output',
  231. learning_rate=.000025,
  232. warmup_steps=0,
  233. warmup_start_lr=0.0,
  234. lr_decay_epochs=(30, 60, 90),
  235. lr_decay_gamma=0.1,
  236. early_stop=False,
  237. early_stop_patience=5,
  238. use_vdl=True,
  239. infer_image_shape=[-1, -1],
  240. quant_config=None):
  241. """
  242. Quantization-aware training.
  243. Args:
  244. num_epochs(int): The number of epochs.
  245. train_dataset(paddlex.dataset): Training dataset.
  246. train_batch_size(int, optional): Total batch size among all cards used in training. Defaults to 64.
  247. eval_dataset(paddlex.dataset, optional):
  248. Evaluation dataset. If None, the model will not be evaluated during training process. Defaults to None.
  249. optimizer(paddle.optimizer.Optimizer or None, optional):
  250. Optimizer used for training. If None, a default optimizer is used. Defaults to None.
  251. save_interval_epochs(int, optional): Epoch interval for saving the model. Defaults to 1.
  252. log_interval_steps(int, optional): Step interval for printing training information. Defaults to 10.
  253. save_dir(str, optional): Directory to save the model. Defaults to 'output'.
  254. learning_rate(float, optional): Learning rate for training. Defaults to .025.
  255. warmup_steps(int, optional): The number of steps of warm-up training. Defaults to 0.
  256. warmup_start_lr(float, optional): Start learning rate of warm-up training. Defaults to 0..
  257. lr_decay_epochs(List[int] or Tuple[int], optional):
  258. Epoch milestones for learning rate decay. Defaults to (20, 60, 90).
  259. lr_decay_gamma(float, optional): Gamma coefficient of learning rate decay, default .1.
  260. early_stop(bool, optional): Whether to adopt early stop strategy. Defaults to False.
  261. early_stop_patience(int, optional): Early stop patience. Defaults to 5.
  262. use_vdl(bool, optional): Whether to use VisualDL to monitor the training process. Defaults to True.
  263. infer_image_shape(List[int], optional): The shape of input images during inference process, in [w, h] format.
  264. If the shape of images is variable, set `infer_image_shape` to [-1, -1]. Defaults to [-1, -1].
  265. quant_config(dict or None, optional): Quantization configuration. If None, a default rule of thumb
  266. configuration will be used. Defaults to None.
  267. """
  268. self._prepare_qat(quant_config, infer_image_shape)
  269. self.train(
  270. num_epochs=num_epochs,
  271. train_dataset=train_dataset,
  272. train_batch_size=train_batch_size,
  273. eval_dataset=eval_dataset,
  274. optimizer=optimizer,
  275. save_interval_epochs=save_interval_epochs,
  276. log_interval_steps=log_interval_steps,
  277. save_dir=save_dir,
  278. pretrain_weights=None,
  279. learning_rate=learning_rate,
  280. warmup_steps=warmup_steps,
  281. warmup_start_lr=warmup_start_lr,
  282. lr_decay_epochs=lr_decay_epochs,
  283. lr_decay_gamma=lr_decay_gamma,
  284. early_stop=early_stop,
  285. early_stop_patience=early_stop_patience,
  286. use_vdl=use_vdl)
  287. def evaluate(self, eval_dataset, batch_size=1, return_details=False):
  288. """
  289. Evaluate the model.
  290. Args:
  291. eval_dataset(paddlex.dataset): Evaluation dataset.
  292. batch_size(int, optional): Total batch size among all cards used for evaluation. Defaults to 1.
  293. return_details(bool, optional): Whether to return evaluation details. Defaults to False.
  294. Returns:
  295. collections.OrderedDict with key-value pairs: {"acc1": `top 1 accuracy`, "acc5": `top 5 accuracy`}.
  296. """
  297. # 给transform添加arrange操作
  298. arrange_transforms(
  299. model_type=self.model_type,
  300. transforms=eval_dataset.transforms,
  301. mode='eval')
  302. self.net.eval()
  303. nranks = paddle.distributed.get_world_size()
  304. local_rank = paddle.distributed.get_rank()
  305. if nranks > 1:
  306. # Initialize parallel environment if not done.
  307. if not paddle.distributed.parallel.parallel_helper._is_parallel_ctx_initialized(
  308. ):
  309. paddle.distributed.init_parallel_env()
  310. self.eval_data_loader = self.build_data_loader(
  311. eval_dataset, batch_size=batch_size, mode='eval')
  312. eval_metrics = TrainingStats()
  313. eval_details = None
  314. if return_details:
  315. eval_details = list()
  316. logging.info(
  317. "Start to evaluate(total_samples={}, total_steps={})...".format(
  318. eval_dataset.num_samples,
  319. math.ceil(eval_dataset.num_samples * 1.0 / batch_size)))
  320. with paddle.no_grad():
  321. for step, data in enumerate(self.eval_data_loader()):
  322. outputs = self.run(self.net, data, mode='eval')
  323. if return_details:
  324. eval_details.append(outputs['prediction'].numpy())
  325. outputs.pop('prediction')
  326. eval_metrics.update(outputs)
  327. if return_details:
  328. return eval_metrics.get(), eval_details
  329. else:
  330. return eval_metrics.get()
  331. def predict(self, img_file, transforms=None, topk=1):
  332. """
  333. Do inference.
  334. Args:
  335. img_file(List[np.ndarray or str], str or np.ndarray): img_file(list or str or np.array):
  336. Image path or decoded image data in a BGR format, which also could constitute a list,
  337. meaning all images to be predicted as a mini-batch.
  338. transforms(paddlex.transforms.Compose or None, optional):
  339. Transforms for inputs. If None, the transforms for evaluation process will be used. Defaults to None.
  340. topk(int, optional): Keep topk results in prediction. Defaults to 1.
  341. Returns:
  342. If img_file is a string or np.array, the result is a dict with key-value pairs:
  343. {"category_id": `category_id`, "category": `category`, "score": `score`}.
  344. If img_file is a list, the result is a list composed of dicts with the corresponding fields:
  345. category_id(int): the predicted category ID
  346. category(str): category name
  347. score(float): confidence
  348. """
  349. if transforms is None and not hasattr(self, 'test_transforms'):
  350. raise Exception("transforms need to be defined, now is None.")
  351. if transforms is None:
  352. transforms = self.test_transforms
  353. true_topk = min(self.num_classes, topk)
  354. if isinstance(img_file, (str, np.ndarray)):
  355. images = [img_file]
  356. else:
  357. images = img_file
  358. im = self._preprocess(images, transforms, self.model_type)
  359. self.net.eval()
  360. with paddle.no_grad():
  361. outputs = self.run(self.net, im, mode='test')
  362. prediction = outputs['prediction'].numpy()
  363. prediction = self._postprocess(prediction, true_topk, self.labels)
  364. if isinstance(img_file, (str, np.ndarray)):
  365. prediction = prediction[0]
  366. return prediction
  367. def _preprocess(self, images, transforms, model_type):
  368. arrange_transforms(
  369. model_type=model_type, transforms=transforms, mode='test')
  370. batch_im = list()
  371. for im in images:
  372. sample = {'image': im}
  373. batch_im.append(transforms(sample))
  374. batch_im = to_tensor(batch_im)
  375. return batch_im,
  376. def _postprocess(self, results, true_topk, labels):
  377. preds = list()
  378. for i, pred in enumerate(results):
  379. pred_label = np.argsort(pred)[::-1][:true_topk]
  380. preds.append([{
  381. 'category_id': l,
  382. 'category': labels[l],
  383. 'score': results[i][l]
  384. } for l in pred_label])
  385. return preds
  386. class ResNet18(BaseClassifier):
  387. def __init__(self, num_classes=1000):
  388. super(ResNet18, self).__init__(
  389. model_name='ResNet18', num_classes=num_classes)
  390. class ResNet34(BaseClassifier):
  391. def __init__(self, num_classes=1000):
  392. super(ResNet34, self).__init__(
  393. model_name='ResNet34', num_classes=num_classes)
  394. class ResNet50(BaseClassifier):
  395. def __init__(self, num_classes=1000):
  396. super(ResNet50, self).__init__(
  397. model_name='ResNet50', num_classes=num_classes)
  398. class ResNet101(BaseClassifier):
  399. def __init__(self, num_classes=1000):
  400. super(ResNet101, self).__init__(
  401. model_name='ResNet101', num_classes=num_classes)
  402. class ResNet152(BaseClassifier):
  403. def __init__(self, num_classes=1000):
  404. super(ResNet152, self).__init__(
  405. model_name='ResNet152', num_classes=num_classes)
  406. class ResNet18_vd(BaseClassifier):
  407. def __init__(self, num_classes=1000):
  408. super(ResNet18_vd, self).__init__(
  409. model_name='ResNet18_vd', num_classes=num_classes)
  410. class ResNet34_vd(BaseClassifier):
  411. def __init__(self, num_classes=1000):
  412. super(ResNet34_vd, self).__init__(
  413. model_name='ResNet34_vd', num_classes=num_classes)
  414. class ResNet50_vd(BaseClassifier):
  415. def __init__(self, num_classes=1000):
  416. super(ResNet50_vd, self).__init__(
  417. model_name='ResNet50_vd', num_classes=num_classes)
  418. class ResNet50_vd_ssld(BaseClassifier):
  419. def __init__(self, num_classes=1000):
  420. super(ResNet50_vd_ssld, self).__init__(
  421. model_name='ResNet50_vd',
  422. num_classes=num_classes,
  423. lr_mult_list=[.1, .1, .2, .2, .3])
  424. self.model_name = 'ResNet50_vd_ssld'
  425. class ResNet101_vd(BaseClassifier):
  426. def __init__(self, num_classes=1000):
  427. super(ResNet101_vd, self).__init__(
  428. model_name='ResNet101_vd', num_classes=num_classes)
  429. class ResNet101_vd_ssld(BaseClassifier):
  430. def __init__(self, num_classes=1000):
  431. super(ResNet101_vd_ssld, self).__init__(
  432. model_name='ResNet101_vd',
  433. num_classes=num_classes,
  434. lr_mult_list=[.1, .1, .2, .2, .3])
  435. self.model_name = 'ResNet101_vd_ssld'
  436. class ResNet152_vd(BaseClassifier):
  437. def __init__(self, num_classes=1000):
  438. super(ResNet152_vd, self).__init__(
  439. model_name='ResNet152_vd', num_classes=num_classes)
  440. class ResNet200_vd(BaseClassifier):
  441. def __init__(self, num_classes=1000):
  442. super(ResNet200_vd, self).__init__(
  443. model_name='ResNet200_vd', num_classes=num_classes)
  444. class AlexNet(BaseClassifier):
  445. def __init__(self, num_classes=1000):
  446. super(AlexNet, self).__init__(
  447. model_name='AlexNet', num_classes=num_classes)
  448. def get_test_inputs(self, image_shape):
  449. if image_shape == [-1, -1]:
  450. image_shape = [224, 224]
  451. logging.info('When exporting inference model for {},'.format(
  452. self.__class__.__name__
  453. ) + ' if image_shape is [-1, -1], it will be forcibly set to [224, 224]'
  454. )
  455. input_spec = [
  456. InputSpec(
  457. shape=[None, 3] + image_shape, name='image', dtype='float32')
  458. ]
  459. return input_spec
  460. class DarkNet53(BaseClassifier):
  461. def __init__(self, num_classes=1000):
  462. super(DarkNet53, self).__init__(
  463. model_name='DarkNet53', num_classes=num_classes)
  464. class MobileNetV1(BaseClassifier):
  465. def __init__(self, num_classes=1000, scale=1.0):
  466. supported_scale = [.25, .5, .75, 1.0]
  467. if scale not in supported_scale:
  468. logging.warning("scale={} is not supported by MobileNetV1, "
  469. "scale is forcibly set to 1.0".format(scale))
  470. scale = 1.0
  471. if scale == 1:
  472. model_name = 'MobileNetV1'
  473. else:
  474. model_name = 'MobileNetV1_x' + str(scale).replace('.', '_')
  475. self.scale = scale
  476. super(MobileNetV1, self).__init__(
  477. model_name=model_name, num_classes=num_classes)
  478. class MobileNetV2(BaseClassifier):
  479. def __init__(self, num_classes=1000, scale=1.0):
  480. supported_scale = [.25, .5, .75, 1.0, 1.5, 2.0]
  481. if scale not in supported_scale:
  482. logging.warning("scale={} is not supported by MobileNetV2, "
  483. "scale is forcibly set to 1.0".format(scale))
  484. scale = 1.0
  485. if scale == 1:
  486. model_name = 'MobileNetV2'
  487. else:
  488. model_name = 'MobileNetV2_x' + str(scale).replace('.', '_')
  489. super(MobileNetV2, self).__init__(
  490. model_name=model_name, num_classes=num_classes)
  491. class MobileNetV3_small(BaseClassifier):
  492. def __init__(self, num_classes=1000, scale=1.0):
  493. supported_scale = [.35, .5, .75, 1.0, 1.25]
  494. if scale not in supported_scale:
  495. logging.warning("scale={} is not supported by MobileNetV3_small, "
  496. "scale is forcibly set to 1.0".format(scale))
  497. scale = 1.0
  498. model_name = 'MobileNetV3_small_x' + str(float(scale)).replace('.',
  499. '_')
  500. super(MobileNetV3_small, self).__init__(
  501. model_name=model_name, num_classes=num_classes)
  502. class MobileNetV3_small_ssld(BaseClassifier):
  503. def __init__(self, num_classes=1000, scale=1.0):
  504. supported_scale = [.35, 1.0]
  505. if scale not in supported_scale:
  506. logging.warning(
  507. "scale={} is not supported by MobileNetV3_small_ssld, "
  508. "scale is forcibly set to 1.0".format(scale))
  509. scale = 1.0
  510. model_name = 'MobileNetV3_small_x' + str(float(scale)).replace('.',
  511. '_')
  512. super(MobileNetV3_small_ssld, self).__init__(
  513. model_name=model_name, num_classes=num_classes)
  514. self.model_name = model_name + '_ssld'
  515. class MobileNetV3_large(BaseClassifier):
  516. def __init__(self, num_classes=1000, scale=1.0):
  517. supported_scale = [.35, .5, .75, 1.0, 1.25]
  518. if scale not in supported_scale:
  519. logging.warning("scale={} is not supported by MobileNetV3_large, "
  520. "scale is forcibly set to 1.0".format(scale))
  521. scale = 1.0
  522. model_name = 'MobileNetV3_large_x' + str(float(scale)).replace('.',
  523. '_')
  524. super(MobileNetV3_large, self).__init__(
  525. model_name=model_name, num_classes=num_classes)
  526. class MobileNetV3_large_ssld(BaseClassifier):
  527. def __init__(self, num_classes=1000):
  528. super(MobileNetV3_large_ssld, self).__init__(
  529. model_name='MobileNetV3_large_x1_0', num_classes=num_classes)
  530. self.model_name = 'MobileNetV3_large_x1_0_ssld'
  531. class DenseNet121(BaseClassifier):
  532. def __init__(self, num_classes=1000):
  533. super(DenseNet121, self).__init__(
  534. model_name='DenseNet121', num_classes=num_classes)
  535. class DenseNet161(BaseClassifier):
  536. def __init__(self, num_classes=1000):
  537. super(DenseNet161, self).__init__(
  538. model_name='DenseNet161', num_classes=num_classes)
  539. class DenseNet169(BaseClassifier):
  540. def __init__(self, num_classes=1000):
  541. super(DenseNet169, self).__init__(
  542. model_name='DenseNet169', num_classes=num_classes)
  543. class DenseNet201(BaseClassifier):
  544. def __init__(self, num_classes=1000):
  545. super(DenseNet201, self).__init__(
  546. model_name='DenseNet201', num_classes=num_classes)
  547. class DenseNet264(BaseClassifier):
  548. def __init__(self, num_classes=1000):
  549. super(DenseNet264, self).__init__(
  550. model_name='DenseNet264', num_classes=num_classes)
  551. class HRNet_W18_C(BaseClassifier):
  552. def __init__(self, num_classes=1000):
  553. super(HRNet_W18_C, self).__init__(
  554. model_name='HRNet_W18_C', num_classes=num_classes)
  555. class HRNet_W30_C(BaseClassifier):
  556. def __init__(self, num_classes=1000):
  557. super(HRNet_W30_C, self).__init__(
  558. model_name='HRNet_W30_C', num_classes=num_classes)
  559. class HRNet_W32_C(BaseClassifier):
  560. def __init__(self, num_classes=1000):
  561. super(HRNet_W32_C, self).__init__(
  562. model_name='HRNet_W32_C', num_classes=num_classes)
  563. class HRNet_W40_C(BaseClassifier):
  564. def __init__(self, num_classes=1000):
  565. super(HRNet_W40_C, self).__init__(
  566. model_name='HRNet_W40_C', num_classes=num_classes)
  567. class HRNet_W44_C(BaseClassifier):
  568. def __init__(self, num_classes=1000):
  569. super(HRNet_W44_C, self).__init__(
  570. model_name='HRNet_W44_C', num_classes=num_classes)
  571. class HRNet_W48_C(BaseClassifier):
  572. def __init__(self, num_classes=1000):
  573. super(HRNet_W48_C, self).__init__(
  574. model_name='HRNet_W48_C', num_classes=num_classes)
  575. class HRNet_W64_C(BaseClassifier):
  576. def __init__(self, num_classes=1000):
  577. super(HRNet_W64_C, self).__init__(
  578. model_name='HRNet_W64_C', num_classes=num_classes)
  579. class Xception41(BaseClassifier):
  580. def __init__(self, num_classes=1000):
  581. super(Xception41, self).__init__(
  582. model_name='Xception41', num_classes=num_classes)
  583. class Xception65(BaseClassifier):
  584. def __init__(self, num_classes=1000):
  585. super(Xception65, self).__init__(
  586. model_name='Xception65', num_classes=num_classes)
  587. class Xception71(BaseClassifier):
  588. def __init__(self, num_classes=1000):
  589. super(Xception71, self).__init__(
  590. model_name='Xception71', num_classes=num_classes)
  591. class ShuffleNetV2(BaseClassifier):
  592. def __init__(self, num_classes=1000, scale=1.0):
  593. supported_scale = [.25, .33, .5, 1.0, 1.5, 2.0]
  594. if scale not in supported_scale:
  595. logging.warning("scale={} is not supported by ShuffleNetV2, "
  596. "scale is forcibly set to 1.0".format(scale))
  597. scale = 1.0
  598. model_name = 'ShuffleNetV2_x' + str(float(scale)).replace('.', '_')
  599. super(ShuffleNetV2, self).__init__(
  600. model_name=model_name, num_classes=num_classes)
  601. def get_test_inputs(self, image_shape):
  602. if image_shape == [-1, -1]:
  603. image_shape = [224, 224]
  604. logging.info('When exporting inference model for {},'.format(
  605. self.__class__.__name__
  606. ) + ' if image_shape is [-1, -1], it will be forcibly set to [224, 224]'
  607. )
  608. input_spec = [
  609. InputSpec(
  610. shape=[None, 3] + image_shape, name='image', dtype='float32')
  611. ]
  612. return input_spec
  613. class ShuffleNetV2_swish(BaseClassifier):
  614. def __init__(self, num_classes=1000):
  615. super(ShuffleNetV2_swish, self).__init__(
  616. model_name='ShuffleNetV2_x1_5', num_classes=num_classes)
  617. def get_test_inputs(self, image_shape):
  618. if image_shape == [-1, -1]:
  619. image_shape = [224, 224]
  620. logging.info('When exporting inference model for {},'.format(
  621. self.__class__.__name__
  622. ) + ' if image_shape is [-1, -1], it will be forcibly set to [224, 224]'
  623. )
  624. input_spec = [
  625. InputSpec(
  626. shape=[None, 3] + image_shape, name='image', dtype='float32')
  627. ]
  628. return input_spec