| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228 |
- # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import base64
- import time
- from abc import ABC, abstractmethod
- from typing import List
- from paddlex.utils import logging
- from .....utils.deps import class_requires_deps, is_dep_available
- from .....utils.subclass_register import AutoRegisterABCMetaClass
- if is_dep_available("langchain"):
- from langchain.docstore.document import Document
- from langchain.text_splitter import RecursiveCharacterTextSplitter
- if is_dep_available("langchain-community"):
- from langchain_community import vectorstores
- from langchain_community.vectorstores import FAISS
- @class_requires_deps("langchain", "langchain-community")
- class BaseRetriever(ABC, metaclass=AutoRegisterABCMetaClass):
- """Base Retriever"""
- __is_base = True
- VECTOR_STORE_PREFIX = "PADDLEX_VECTOR_STORE"
- def __init__(self):
- """Initializes an instance of base retriever."""
- super().__init__()
- self.model_name = None
- self.embedding = None
- @abstractmethod
- def generate_vector_database(self):
- """
- Declaration of an abstract method. Subclasses are expected to
- provide a concrete implementation of generate_vector_database.
- """
- raise NotImplementedError(
- "The method `generate_vector_database` has not been implemented yet."
- )
- @abstractmethod
- def similarity_retrieval(self):
- """
- Declaration of an abstract method. Subclasses are expected to
- provide a concrete implementation of similarity_retrieval.
- """
- raise NotImplementedError(
- "The method `similarity_retrieval` has not been implemented yet."
- )
- def get_model_name(self) -> str:
- """
- Get the model name used for generating vectors.
- Returns:
- str: The model name.
- """
- return self.model_name
- def is_vector_store(self, s: str) -> bool:
- """
- Check if the given string starts with the vector store prefix.
- Args:
- s (str): The input string to check.
- Returns:
- bool: True if the string starts with the vector store prefix, False otherwise.
- """
- return s.startswith(self.VECTOR_STORE_PREFIX)
- def encode_vector_store(self, vector_store_bytes: bytes) -> str:
- """
- Encode the vector store bytes into a base64 string prefixed with a specific prefix.
- Args:
- vector_store_bytes (bytes): The bytes to encode.
- Returns:
- str: The encoded string with the prefix.
- """
- return self.VECTOR_STORE_PREFIX + base64.b64encode(vector_store_bytes).decode(
- "ascii"
- )
- def decode_vector_store(self, vector_store_str: str) -> bytes:
- """
- Decodes the vector store string by removing the prefix and decoding the base64 encoded string.
- Args:
- vector_store_str (str): The vector store string with a prefix.
- Returns:
- bytes: The decoded vector store data.
- """
- return base64.b64decode(vector_store_str[len(self.VECTOR_STORE_PREFIX) :])
- def generate_vector_database(
- self,
- text_list: List[str],
- block_size: int = 300,
- separators: List[str] = ["\t", "\n", "。", "\n\n", ""],
- ) -> "FAISS":
- """
- Generates a vector database from a list of texts.
- Args:
- text_list (list[str]): A list of texts to generate the vector database from.
- block_size (int): The size of each chunk to split the text into.
- separators (list[str]): A list of separators to use when splitting the text.
- Returns:
- FAISS: The generated vector database.
- Raises:
- ValueError: If an unsupported API type is configured.
- """
- text_splitter = RecursiveCharacterTextSplitter(
- chunk_size=block_size, chunk_overlap=20, separators=separators
- )
- texts = text_splitter.split_text("\t".join(text_list))
- all_splits = [Document(page_content=text) for text in texts]
- try:
- vectorstore = FAISS.from_documents(
- documents=all_splits, embedding=self.embedding
- )
- except ValueError:
- vectorstore = None
- return vectorstore
- def encode_vector_store_to_bytes(self, vectorstore: "FAISS") -> str:
- """
- Encode the vector store serialized to bytes.
- Args:
- vectorstore (FAISS): The vector store to be serialized and encoded.
- Returns:
- str: The encoded vector store.
- """
- if vectorstore is None:
- vectorstore = self.VECTOR_STORE_PREFIX
- else:
- vectorstore = self.encode_vector_store(vectorstore.serialize_to_bytes())
- return vectorstore
- def decode_vector_store_from_bytes(self, vectorstore: str) -> "FAISS":
- """
- Decode a vector store from bytes according to the specified API type.
- Args:
- vectorstore (str): The serialized vector store string.
- Returns:
- FAISS: Deserialized vector store object.
- Raises:
- ValueError: If the retrieved vector store is not for PaddleX
- or if an unsupported API type is specified.
- """
- if not self.is_vector_store(vectorstore):
- raise ValueError("The retrieved vectorstore is not for PaddleX.")
- vectorstore = self.decode_vector_store(vectorstore)
- if vectorstore == b"":
- logging.warning("The retrieved vectorstore is empty,will empty vector.")
- return None
- vector = vectorstores.FAISS.deserialize_from_bytes(
- vectorstore,
- embeddings=self.embedding,
- allow_dangerous_deserialization=True,
- )
- return vector
- def similarity_retrieval(
- self,
- query_text_list: List[str],
- vectorstore: "FAISS",
- sleep_time: float = 0.5,
- topk: int = 2,
- min_characters: int = 3500,
- ) -> str:
- """
- Retrieve similar contexts based on a list of query texts.
- Args:
- query_text_list (list[str]): A list of query texts to search for similar contexts.
- vectorstore (FAISS): The vector store where to perform the similarity search.
- sleep_time (float): The time to sleep between each query, in seconds. Default is 0.5.
- topk (int): The number of results to retrieve per query. Default is 2.
- min_characters (int): The minimum number of characters required for text processing, defaults to 3500.
- Returns:
- str: A concatenated string of all unique contexts found.
- """
- all_C = ""
- if vectorstore is None:
- return all_C
- for query_text in query_text_list:
- QUESTION = query_text
- time.sleep(sleep_time)
- docs = vectorstore.similarity_search_with_relevance_scores(QUESTION, k=topk)
- context = [(document.page_content, score) for document, score in docs]
- context = sorted(context, key=lambda x: x[1])
- for text, score in context[::-1]:
- if score >= -0.1:
- if len(all_C) + len(text) > min_characters:
- break
- all_C += text
- return all_C
|