pipeline.py 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335
  1. # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from typing import Any, Dict, List, Optional, Tuple, Union
  15. import numpy as np
  16. from ....utils import logging
  17. from ....utils.deps import pipeline_requires_extra
  18. from ...common.batch_sampler import ImageBatchSampler
  19. from ...common.reader import ReadImage
  20. from ...models.object_detection.result import DetResult
  21. from ...utils.hpi import HPIConfig
  22. from ...utils.pp_option import PaddlePredictorOption
  23. from .._parallel import AutoParallelImageSimpleInferencePipeline
  24. from ..base import BasePipeline
  25. from ..components import CropByBoxes
  26. from .result import SealRecognitionResult
  27. class _SealRecognitionPipeline(BasePipeline):
  28. """Seal Recognition Pipeline"""
  29. def __init__(
  30. self,
  31. config: Dict,
  32. device: str = None,
  33. pp_option: PaddlePredictorOption = None,
  34. use_hpip: bool = False,
  35. hpi_config: Optional[Union[Dict[str, Any], HPIConfig]] = None,
  36. ) -> None:
  37. """Initializes the seal recognition pipeline.
  38. Args:
  39. config (Dict): Configuration dictionary containing various settings.
  40. device (str, optional): Device to run the predictions on. Defaults to None.
  41. pp_option (PaddlePredictorOption, optional): PaddlePredictor options. Defaults to None.
  42. use_hpip (bool, optional): Whether to use the high-performance
  43. inference plugin (HPIP) by default. Defaults to False.
  44. hpi_config (Optional[Union[Dict[str, Any], HPIConfig]], optional):
  45. The default high-performance inference configuration dictionary.
  46. Defaults to None.
  47. """
  48. super().__init__(
  49. device=device, pp_option=pp_option, use_hpip=use_hpip, hpi_config=hpi_config
  50. )
  51. self.use_doc_preprocessor = config.get("use_doc_preprocessor", True)
  52. if self.use_doc_preprocessor:
  53. doc_preprocessor_config = config.get("SubPipelines", {}).get(
  54. "DocPreprocessor",
  55. {
  56. "pipeline_config_error": "config error for doc_preprocessor_pipeline!"
  57. },
  58. )
  59. self.doc_preprocessor_pipeline = self.create_pipeline(
  60. doc_preprocessor_config
  61. )
  62. self.use_layout_detection = config.get("use_layout_detection", True)
  63. if self.use_layout_detection:
  64. layout_det_config = config.get("SubModules", {}).get(
  65. "LayoutDetection",
  66. {"model_config_error": "config error for layout_det_model!"},
  67. )
  68. layout_kwargs = {}
  69. if (threshold := layout_det_config.get("threshold", None)) is not None:
  70. layout_kwargs["threshold"] = threshold
  71. if (layout_nms := layout_det_config.get("layout_nms", None)) is not None:
  72. layout_kwargs["layout_nms"] = layout_nms
  73. if (
  74. layout_unclip_ratio := layout_det_config.get(
  75. "layout_unclip_ratio", None
  76. )
  77. ) is not None:
  78. layout_kwargs["layout_unclip_ratio"] = layout_unclip_ratio
  79. if (
  80. layout_merge_bboxes_mode := layout_det_config.get(
  81. "layout_merge_bboxes_mode", None
  82. )
  83. ) is not None:
  84. layout_kwargs["layout_merge_bboxes_mode"] = layout_merge_bboxes_mode
  85. self.layout_det_model = self.create_model(
  86. layout_det_config, **layout_kwargs
  87. )
  88. seal_ocr_config = config.get("SubPipelines", {}).get(
  89. "SealOCR", {"pipeline_config_error": "config error for seal_ocr_pipeline!"}
  90. )
  91. self.seal_ocr_pipeline = self.create_pipeline(seal_ocr_config)
  92. self._crop_by_boxes = CropByBoxes()
  93. self.batch_sampler = ImageBatchSampler(batch_size=config.get("batch_size", 1))
  94. self.img_reader = ReadImage(format="BGR")
  95. def check_model_settings_valid(
  96. self, model_settings: Dict, layout_det_res: DetResult
  97. ) -> bool:
  98. """
  99. Check if the input parameters are valid based on the initialized models.
  100. Args:
  101. model_settings (Dict): A dictionary containing input parameters.
  102. layout_det_res (DetResult): Layout detection result.
  103. Returns:
  104. bool: True if all required models are initialized according to input parameters, False otherwise.
  105. """
  106. if model_settings["use_doc_preprocessor"] and not self.use_doc_preprocessor:
  107. logging.error(
  108. "Set use_doc_preprocessor, but the models for doc preprocessor are not initialized."
  109. )
  110. return False
  111. if model_settings["use_layout_detection"]:
  112. if layout_det_res is not None:
  113. logging.error(
  114. "The layout detection model has already been initialized, please set use_layout_detection=False"
  115. )
  116. return False
  117. if not self.use_layout_detection:
  118. logging.error(
  119. "Set use_layout_detection, but the models for layout detection are not initialized."
  120. )
  121. return False
  122. return True
  123. def get_model_settings(
  124. self,
  125. use_doc_orientation_classify: Optional[bool],
  126. use_doc_unwarping: Optional[bool],
  127. use_layout_detection: Optional[bool],
  128. ) -> dict:
  129. """
  130. Get the model settings based on the provided parameters or default values.
  131. Args:
  132. use_doc_orientation_classify (Optional[bool]): Whether to use document orientation classification.
  133. use_doc_unwarping (Optional[bool]): Whether to use document unwarping.
  134. use_layout_detection (Optional[bool]): Whether to use layout detection.
  135. Returns:
  136. dict: A dictionary containing the model settings.
  137. """
  138. if use_doc_orientation_classify is None and use_doc_unwarping is None:
  139. use_doc_preprocessor = self.use_doc_preprocessor
  140. else:
  141. if use_doc_orientation_classify is True or use_doc_unwarping is True:
  142. use_doc_preprocessor = True
  143. else:
  144. use_doc_preprocessor = False
  145. if use_layout_detection is None:
  146. use_layout_detection = self.use_layout_detection
  147. return dict(
  148. use_doc_preprocessor=use_doc_preprocessor,
  149. use_layout_detection=use_layout_detection,
  150. )
  151. def predict(
  152. self,
  153. input: Union[str, List[str], np.ndarray, List[np.ndarray]],
  154. use_doc_orientation_classify: Optional[bool] = None,
  155. use_doc_unwarping: Optional[bool] = None,
  156. use_layout_detection: Optional[bool] = None,
  157. layout_det_res: Optional[Union[DetResult, List[DetResult]]] = None,
  158. layout_threshold: Optional[Union[float, dict]] = None,
  159. layout_nms: Optional[bool] = None,
  160. layout_unclip_ratio: Optional[Union[float, Tuple[float, float]]] = None,
  161. layout_merge_bboxes_mode: Optional[str] = None,
  162. seal_det_limit_side_len: Optional[int] = None,
  163. seal_det_limit_type: Optional[str] = None,
  164. seal_det_thresh: Optional[float] = None,
  165. seal_det_box_thresh: Optional[float] = None,
  166. seal_det_unclip_ratio: Optional[float] = None,
  167. seal_rec_score_thresh: Optional[float] = None,
  168. **kwargs,
  169. ) -> SealRecognitionResult:
  170. model_settings = self.get_model_settings(
  171. use_doc_orientation_classify, use_doc_unwarping, use_layout_detection
  172. )
  173. if not self.check_model_settings_valid(model_settings, layout_det_res):
  174. yield {"error": "the input params for model settings are invalid!"}
  175. external_layout_det_results = layout_det_res
  176. if external_layout_det_results is not None:
  177. if not isinstance(external_layout_det_results, list):
  178. external_layout_det_results = [external_layout_det_results]
  179. external_layout_det_results = iter(external_layout_det_results)
  180. for _, batch_data in enumerate(self.batch_sampler(input)):
  181. image_arrays = self.img_reader(batch_data.instances)
  182. if model_settings["use_doc_preprocessor"]:
  183. doc_preprocessor_results = list(
  184. self.doc_preprocessor_pipeline(
  185. image_arrays,
  186. use_doc_orientation_classify=use_doc_orientation_classify,
  187. use_doc_unwarping=use_doc_unwarping,
  188. )
  189. )
  190. else:
  191. doc_preprocessor_results = [{"output_img": arr} for arr in image_arrays]
  192. doc_preprocessor_images = [
  193. item["output_img"] for item in doc_preprocessor_results
  194. ]
  195. if (
  196. not model_settings["use_layout_detection"]
  197. and external_layout_det_results is None
  198. ):
  199. layout_det_results = [{} for _ in doc_preprocessor_images]
  200. flat_seal_results = list(
  201. self.seal_ocr_pipeline(
  202. doc_preprocessor_images,
  203. text_det_limit_side_len=seal_det_limit_side_len,
  204. text_det_limit_type=seal_det_limit_type,
  205. text_det_thresh=seal_det_thresh,
  206. text_det_box_thresh=seal_det_box_thresh,
  207. text_det_unclip_ratio=seal_det_unclip_ratio,
  208. text_rec_score_thresh=seal_rec_score_thresh,
  209. )
  210. )
  211. for seal_res in flat_seal_results:
  212. seal_res["seal_region_id"] = 1
  213. seal_results = [[item] for item in flat_seal_results]
  214. else:
  215. if model_settings["use_layout_detection"]:
  216. layout_det_results = list(
  217. self.layout_det_model(
  218. doc_preprocessor_images,
  219. threshold=layout_threshold,
  220. layout_nms=layout_nms,
  221. layout_unclip_ratio=layout_unclip_ratio,
  222. layout_merge_bboxes_mode=layout_merge_bboxes_mode,
  223. )
  224. )
  225. else:
  226. layout_det_results = []
  227. for _ in doc_preprocessor_images:
  228. try:
  229. layout_det_res = next(external_layout_det_results)
  230. except StopIteration:
  231. raise ValueError("No more layout det results")
  232. layout_det_results.append(layout_det_res)
  233. cropped_imgs = []
  234. chunk_indices = [0]
  235. for doc_preprocessor_image, layout_det_res in zip(
  236. doc_preprocessor_images, layout_det_results
  237. ):
  238. for box_info in layout_det_res["boxes"]:
  239. if box_info["label"].lower() in ["seal"]:
  240. crop_img_info = self._crop_by_boxes(
  241. doc_preprocessor_image, [box_info]
  242. )
  243. crop_img_info = crop_img_info[0]
  244. cropped_imgs.append(crop_img_info["img"])
  245. chunk_indices.append(len(cropped_imgs))
  246. flat_seal_results = list(
  247. self.seal_ocr_pipeline(
  248. cropped_imgs,
  249. text_det_limit_side_len=seal_det_limit_side_len,
  250. text_det_limit_type=seal_det_limit_type,
  251. text_det_thresh=seal_det_thresh,
  252. text_det_box_thresh=seal_det_box_thresh,
  253. text_det_unclip_ratio=seal_det_unclip_ratio,
  254. text_rec_score_thresh=seal_rec_score_thresh,
  255. )
  256. )
  257. seal_results = [
  258. flat_seal_results[i:j]
  259. for i, j in zip(chunk_indices[:-1], chunk_indices[1:])
  260. ]
  261. for seal_results_for_img in seal_results:
  262. seal_region_id = 1
  263. for seal_res in seal_results_for_img:
  264. seal_res["seal_region_id"] = seal_region_id
  265. seal_region_id += 1
  266. for (
  267. input_path,
  268. page_index,
  269. doc_preprocessor_res,
  270. layout_det_res,
  271. seal_results_for_img,
  272. ) in zip(
  273. batch_data.input_paths,
  274. batch_data.page_indexes,
  275. doc_preprocessor_results,
  276. layout_det_results,
  277. seal_results,
  278. ):
  279. single_img_res = {
  280. "input_path": input_path,
  281. "page_index": page_index,
  282. "doc_preprocessor_res": doc_preprocessor_res,
  283. "layout_det_res": layout_det_res,
  284. "seal_res_list": seal_results_for_img,
  285. "model_settings": model_settings,
  286. }
  287. yield SealRecognitionResult(single_img_res)
  288. @pipeline_requires_extra("ocr")
  289. class SealRecognitionPipeline(AutoParallelImageSimpleInferencePipeline):
  290. entities = ["seal_recognition"]
  291. @property
  292. def _pipeline_cls(self):
  293. return _SealRecognitionPipeline
  294. def _get_batch_size(self, config):
  295. return config.get("batch_size", 1)