| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266 |
- // Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- /*
- 3D Rotated IoU Calculation (CPU)
- Written by Shaoshuai Shi
- All Rights Reserved 2020.
- */
- #include "iou3d_cpu.h"
- #include <cuda.h>
- #include <cuda_runtime_api.h>
- #include <math.h>
- #include <paddle/extension.h>
- #include <stdio.h>
- #include <vector>
- inline float min(float a, float b) { return a > b ? b : a; }
- inline float max(float a, float b) { return a > b ? a : b; }
- const float EPS = 1e-8;
- struct Point {
- float x, y;
- __device__ Point() {}
- __device__ Point(double _x, double _y) { x = _x, y = _y; }
- __device__ void set(float _x, float _y) {
- x = _x;
- y = _y;
- }
- __device__ Point operator+(const Point &b) const {
- return Point(x + b.x, y + b.y);
- }
- __device__ Point operator-(const Point &b) const {
- return Point(x - b.x, y - b.y);
- }
- };
- inline float cross(const Point &a, const Point &b) {
- return a.x * b.y - a.y * b.x;
- }
- inline float cross(const Point &p1, const Point &p2, const Point &p0) {
- return (p1.x - p0.x) * (p2.y - p0.y) - (p2.x - p0.x) * (p1.y - p0.y);
- }
- inline int check_rect_cross(const Point &p1, const Point &p2, const Point &q1,
- const Point &q2) {
- int ret = min(p1.x, p2.x) <= max(q1.x, q2.x) &&
- min(q1.x, q2.x) <= max(p1.x, p2.x) &&
- min(p1.y, p2.y) <= max(q1.y, q2.y) &&
- min(q1.y, q2.y) <= max(p1.y, p2.y);
- return ret;
- }
- inline int check_in_box2d(const float *box, const Point &p) {
- // params: (7) [x, y, z, dx, dy, dz, heading]
- const float MARGIN = 1e-2;
- float center_x = box[0], center_y = box[1];
- float angle_cos = cos(-box[6]),
- angle_sin =
- sin(-box[6]); // rotate the point in the opposite direction of box
- float rot_x = (p.x - center_x) * angle_cos + (p.y - center_y) * (-angle_sin);
- float rot_y = (p.x - center_x) * angle_sin + (p.y - center_y) * angle_cos;
- return (fabs(rot_x) < box[3] / 2 + MARGIN &&
- fabs(rot_y) < box[4] / 2 + MARGIN);
- }
- inline int intersection(const Point &p1, const Point &p0, const Point &q1,
- const Point &q0, Point &ans) {
- // fast exclusion
- if (check_rect_cross(p0, p1, q0, q1) == 0)
- return 0;
- // check cross standing
- float s1 = cross(q0, p1, p0);
- float s2 = cross(p1, q1, p0);
- float s3 = cross(p0, q1, q0);
- float s4 = cross(q1, p1, q0);
- if (!(s1 * s2 > 0 && s3 * s4 > 0))
- return 0;
- // calculate intersection of two lines
- float s5 = cross(q1, p1, p0);
- if (fabs(s5 - s1) > EPS) {
- ans.x = (s5 * q0.x - s1 * q1.x) / (s5 - s1);
- ans.y = (s5 * q0.y - s1 * q1.y) / (s5 - s1);
- } else {
- float a0 = p0.y - p1.y, b0 = p1.x - p0.x, c0 = p0.x * p1.y - p1.x * p0.y;
- float a1 = q0.y - q1.y, b1 = q1.x - q0.x, c1 = q0.x * q1.y - q1.x * q0.y;
- float D = a0 * b1 - a1 * b0;
- ans.x = (b0 * c1 - b1 * c0) / D;
- ans.y = (a1 * c0 - a0 * c1) / D;
- }
- return 1;
- }
- inline void rotate_around_center(const Point ¢er, const float angle_cos,
- const float angle_sin, Point &p) {
- float new_x =
- (p.x - center.x) * angle_cos + (p.y - center.y) * (-angle_sin) + center.x;
- float new_y =
- (p.x - center.x) * angle_sin + (p.y - center.y) * angle_cos + center.y;
- p.set(new_x, new_y);
- }
- inline int point_cmp(const Point &a, const Point &b, const Point ¢er) {
- return atan2(a.y - center.y, a.x - center.x) >
- atan2(b.y - center.y, b.x - center.x);
- }
- inline float box_overlap(const float *box_a, const float *box_b) {
- // params: box_a (7) [x, y, z, dx, dy, dz, heading]
- // params: box_b (7) [x, y, z, dx, dy, dz, heading]
- // float a_x1 = box_a[0], a_y1 = box_a[1], a_x2 = box_a[2], a_y2 =
- // box_a[3], a_angle = box_a[4];
- // float b_x1 = box_b[0], b_y1 = box_b[1], b_x2 = box_b[2], b_y2 =
- // box_b[3], b_angle = box_b[4];
- float a_angle = box_a[6], b_angle = box_b[6];
- float a_dx_half = box_a[3] / 2, b_dx_half = box_b[3] / 2,
- a_dy_half = box_a[4] / 2, b_dy_half = box_b[4] / 2;
- float a_x1 = box_a[0] - a_dx_half, a_y1 = box_a[1] - a_dy_half;
- float a_x2 = box_a[0] + a_dx_half, a_y2 = box_a[1] + a_dy_half;
- float b_x1 = box_b[0] - b_dx_half, b_y1 = box_b[1] - b_dy_half;
- float b_x2 = box_b[0] + b_dx_half, b_y2 = box_b[1] + b_dy_half;
- Point center_a(box_a[0], box_a[1]);
- Point center_b(box_b[0], box_b[1]);
- Point box_a_corners[5];
- box_a_corners[0].set(a_x1, a_y1);
- box_a_corners[1].set(a_x2, a_y1);
- box_a_corners[2].set(a_x2, a_y2);
- box_a_corners[3].set(a_x1, a_y2);
- Point box_b_corners[5];
- box_b_corners[0].set(b_x1, b_y1);
- box_b_corners[1].set(b_x2, b_y1);
- box_b_corners[2].set(b_x2, b_y2);
- box_b_corners[3].set(b_x1, b_y2);
- // get oriented corners
- float a_angle_cos = cos(a_angle), a_angle_sin = sin(a_angle);
- float b_angle_cos = cos(b_angle), b_angle_sin = sin(b_angle);
- for (int k = 0; k < 4; k++) {
- rotate_around_center(center_a, a_angle_cos, a_angle_sin, box_a_corners[k]);
- rotate_around_center(center_b, b_angle_cos, b_angle_sin, box_b_corners[k]);
- }
- box_a_corners[4] = box_a_corners[0];
- box_b_corners[4] = box_b_corners[0];
- // get intersection of lines
- Point cross_points[16];
- Point poly_center;
- int cnt = 0, flag = 0;
- poly_center.set(0, 0);
- for (int i = 0; i < 4; i++) {
- for (int j = 0; j < 4; j++) {
- flag = intersection(box_a_corners[i + 1], box_a_corners[i],
- box_b_corners[j + 1], box_b_corners[j],
- cross_points[cnt]);
- if (flag) {
- poly_center = poly_center + cross_points[cnt];
- cnt++;
- }
- }
- }
- // check corners
- for (int k = 0; k < 4; k++) {
- if (check_in_box2d(box_a, box_b_corners[k])) {
- poly_center = poly_center + box_b_corners[k];
- cross_points[cnt] = box_b_corners[k];
- cnt++;
- }
- if (check_in_box2d(box_b, box_a_corners[k])) {
- poly_center = poly_center + box_a_corners[k];
- cross_points[cnt] = box_a_corners[k];
- cnt++;
- }
- }
- poly_center.x /= cnt;
- poly_center.y /= cnt;
- // sort the points of polygon
- Point temp;
- for (int j = 0; j < cnt - 1; j++) {
- for (int i = 0; i < cnt - j - 1; i++) {
- if (point_cmp(cross_points[i], cross_points[i + 1], poly_center)) {
- temp = cross_points[i];
- cross_points[i] = cross_points[i + 1];
- cross_points[i + 1] = temp;
- }
- }
- }
- // get the overlap areas
- float area = 0;
- for (int k = 0; k < cnt - 1; k++) {
- area += cross(cross_points[k] - cross_points[0],
- cross_points[k + 1] - cross_points[0]);
- }
- return fabs(area) / 2.0;
- }
- inline float iou_bev(const float *box_a, const float *box_b) {
- // params: box_a (7) [x, y, z, dx, dy, dz, heading]
- // params: box_b (7) [x, y, z, dx, dy, dz, heading]
- float sa = box_a[3] * box_a[4];
- float sb = box_b[3] * box_b[4];
- float s_overlap = box_overlap(box_a, box_b);
- return s_overlap / fmaxf(sa + sb - s_overlap, EPS);
- }
- std::vector<paddle::Tensor>
- boxes_iou_bev_cpu(const paddle::Tensor &boxes_a_tensor,
- const paddle::Tensor &boxes_b_tensor) {
- // params boxes_a_tensor: (N, 7) [x, y, z, dx, dy, dz, heading]
- // params boxes_b_tensor: (M, 7) [x, y, z, dx, dy, dz, heading]
- // params ans_iou_tensor: (N, M)
- int num_boxes_a = boxes_a_tensor.shape()[0];
- int num_boxes_b = boxes_b_tensor.shape()[0];
- const float *boxes_a = boxes_a_tensor.data<float>();
- const float *boxes_b = boxes_b_tensor.data<float>();
- auto ans_iou_tensor =
- paddle::empty({num_boxes_a, num_boxes_b}, paddle::DataType::FLOAT32,
- paddle::CPUPlace());
- float *ans_iou = ans_iou_tensor.data<float>();
- for (int i = 0; i < num_boxes_a; i++) {
- for (int j = 0; j < num_boxes_b; j++) {
- ans_iou[i * num_boxes_b + j] = iou_bev(boxes_a + i * 7, boxes_b + j * 7);
- }
- }
- return {ans_iou_tensor};
- }
|