| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191 |
- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import cv2
- import math
- import numpy as np
- from PIL import Image, ImageEnhance
- def normalize(im, mean, std, min_value=[0, 0, 0], max_value=[255, 255, 255]):
- # Rescaling (min-max normalization)
- range_value = [max_value[i] - min_value[i] for i in range(len(max_value))]
- im = (im - min_value) / range_value
- # Standardization (Z-score Normalization)
- im -= mean
- im /= std
- return im
- def permute(im, to_bgr=False):
- im = np.swapaxes(im, 1, 2)
- im = np.swapaxes(im, 1, 0)
- if to_bgr:
- im = im[[2, 1, 0], :, :]
- return im
- def resize_long(im, long_size=224, interpolation=cv2.INTER_LINEAR):
- value = max(im.shape[0], im.shape[1])
- scale = float(long_size) / float(value)
- resized_width = int(round(im.shape[1] * scale))
- resized_height = int(round(im.shape[0] * scale))
- im = cv2.resize(
- im, (resized_width, resized_height), interpolation=interpolation)
- return im
- def resize(im, target_size=608, interp=cv2.INTER_LINEAR):
- if isinstance(target_size, list) or isinstance(target_size, tuple):
- w = target_size[0]
- h = target_size[1]
- else:
- w = target_size
- h = target_size
- im = cv2.resize(im, (w, h), interpolation=interp)
- return im
- def random_crop(im,
- crop_size=224,
- lower_scale=0.08,
- lower_ratio=3. / 4,
- upper_ratio=4. / 3):
- scale = [lower_scale, 1.0]
- ratio = [lower_ratio, upper_ratio]
- aspect_ratio = math.sqrt(np.random.uniform(*ratio))
- w = 1. * aspect_ratio
- h = 1. / aspect_ratio
- bound = min((float(im.shape[0]) / im.shape[1]) / (h**2),
- (float(im.shape[1]) / im.shape[0]) / (w**2))
- scale_max = min(scale[1], bound)
- scale_min = min(scale[0], bound)
- target_area = im.shape[0] * im.shape[1] * np.random.uniform(scale_min,
- scale_max)
- target_size = math.sqrt(target_area)
- w = int(target_size * w)
- h = int(target_size * h)
- i = np.random.randint(0, im.shape[0] - h + 1)
- j = np.random.randint(0, im.shape[1] - w + 1)
- im = im[i:i + h, j:j + w, :]
- im = cv2.resize(im, (crop_size, crop_size))
- return im
- def center_crop(im, crop_size=224):
- height, width = im.shape[:2]
- w_start = (width - crop_size) // 2
- h_start = (height - crop_size) // 2
- w_end = w_start + crop_size
- h_end = h_start + crop_size
- im = im[h_start:h_end, w_start:w_end, :]
- return im
- def horizontal_flip(im):
- if len(im.shape) == 3:
- im = im[:, ::-1, :]
- elif len(im.shape) == 2:
- im = im[:, ::-1]
- return im
- def vertical_flip(im):
- if len(im.shape) == 3:
- im = im[::-1, :, :]
- elif len(im.shape) == 2:
- im = im[::-1, :]
- return im
- def bgr2rgb(im):
- return im[:, :, ::-1]
- def hue(im, hue_lower, hue_upper):
- delta = np.random.uniform(hue_lower, hue_upper)
- u = np.cos(delta * np.pi)
- w = np.sin(delta * np.pi)
- bt = np.array([[1.0, 0.0, 0.0], [0.0, u, -w], [0.0, w, u]])
- tyiq = np.array([[0.299, 0.587, 0.114], [0.596, -0.274, -0.321],
- [0.211, -0.523, 0.311]])
- ityiq = np.array([[1.0, 0.956, 0.621], [1.0, -0.272, -0.647],
- [1.0, -1.107, 1.705]])
- t = np.dot(np.dot(ityiq, bt), tyiq).T
- im = np.dot(im, t)
- return im
- def saturation(im, saturation_lower, saturation_upper):
- delta = np.random.uniform(saturation_lower, saturation_upper)
- gray = im * np.array([[[0.299, 0.587, 0.114]]], dtype=np.float32)
- gray = gray.sum(axis=2, keepdims=True)
- gray *= (1.0 - delta)
- im *= delta
- im += gray
- return im
- def contrast(im, contrast_lower, contrast_upper):
- delta = np.random.uniform(contrast_lower, contrast_upper)
- im *= delta
- return im
- def brightness(im, brightness_lower, brightness_upper):
- delta = np.random.uniform(brightness_lower, brightness_upper)
- im += delta
- return im
- def rotate(im, rotate_lower, rotate_upper):
- rotate_delta = np.random.uniform(rotate_lower, rotate_upper)
- im = im.rotate(int(rotate_delta))
- return im
- def resize_padding(im, max_side_len=2400):
- '''
- resize image to a size multiple of 32 which is required by the network
- :param im: the resized image
- :param max_side_len: limit of max image size to avoid out of memory in gpu
- :return: the resized image and the resize ratio
- '''
- h, w, _ = im.shape
- resize_w = w
- resize_h = h
- # limit the max side
- if max(resize_h, resize_w) > max_side_len:
- ratio = float(
- max_side_len) / resize_h if resize_h > resize_w else float(
- max_side_len) / resize_w
- else:
- ratio = 1.
- resize_h = int(resize_h * ratio)
- resize_w = int(resize_w * ratio)
- resize_h = resize_h if resize_h % 32 == 0 else (resize_h // 32 - 1) * 32
- resize_w = resize_w if resize_w % 32 == 0 else (resize_w // 32 - 1) * 32
- resize_h = max(32, resize_h)
- resize_w = max(32, resize_w)
- im = cv2.resize(im, (int(resize_w), int(resize_h)))
- #im = cv2.resize(im, (512, 512))
- ratio_h = resize_h / float(h)
- ratio_w = resize_w / float(w)
- _ratio = np.array([ratio_h, ratio_w]).reshape(-1, 2)
- return im, _ratio
|