| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596 |
- #copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import sys
- import os
- import argparse
- import deploy
- def arg_parser():
- parser = argparse.ArgumentParser()
- parser.add_argument(
- "--model_dir",
- "-m",
- type=str,
- default=None,
- help="path to openvino model .xml file")
- parser.add_argument(
- "--img",
- "-i",
- type=str,
- default=None,
- help="path to an image files")
- parser.add_argument(
- "--img_list",
- "-l",
- type=str,
- default=None,
- help="Path to a imglist")
- parser.add_argument(
- "--cfg_dir",
- "-c",
- type=str,
- default=None,
- help="Path to PaddelX model yml file")
- parser.add_argument(
- "--thread_num",
- "-t",
- type=int,
- default=1,
- help="Path to PaddelX model yml file")
- parser.add_argument(
- "--input_shape",
- "-ip",
- type=str,
- default=None,
- help=" image input shape of model [NCHW] like [1,3,224,244] ")
- return parser
- def main():
- parser = arg_parser()
- args = parser.parse_args()
- model_nb = args.model_dir
- model_yaml = args.cfg_dir
- thread_num = args.thread_num
- input_shape = args.input_shape
- input_shape = input_shape[1:-1].split(",",3)
- shape = list(map(int,input_shape))
- #model init
- predictor = deploy.Predictor(model_nb,model_yaml,thread_num,shape)
-
- #predict
- if(args.img_list != None):
- f = open(args.img_list)
- lines = f.readlines()
- for im_path in lines:
- print(im_path)
- predictor.predict(im_path.strip('\n'))
- f.close()
- else:
- im_path = args.img
- predictor.predict(im_path)
- if __name__ == "__main__":
- main()
|