| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990 |
- # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import codecs
- import yaml
- from ....utils import logging
- from ...base.predictor.transforms import image_common
- from .transforms import SaveDetResults, PadStride, DetResize, Pad
- class InnerConfig(object):
- """Inner Config"""
- def __init__(self, config_path):
- self.inner_cfg = self.load(config_path)
- def load(self, config_path):
- """load infer config"""
- with codecs.open(config_path, "r", "utf-8") as file:
- dic = yaml.load(file, Loader=yaml.FullLoader)
- return dic
- @property
- def pre_transforms(self):
- """read preprocess transforms from config file"""
- tfs_cfg = self.inner_cfg["Preprocess"]
- tfs = []
- for cfg in tfs_cfg:
- if cfg["type"] == "NormalizeImage":
- mean = cfg.get("mean", 0.5)
- std = cfg.get("std", 0.5)
- scale = 1.0 / 255.0 if cfg.get("is_scale", True) else 1
- norm_type = cfg.get("norm_type", "mean_std")
- if norm_type != "mean_std":
- mean = 0
- std = 1
- tf = image_common.Normalize(mean=mean, std=std, scale=scale)
- elif cfg["type"] == "Resize":
- interp = cfg.get("interp", "LINEAR")
- if isinstance(interp, int):
- interp = {
- 0: "NEAREST",
- 1: "LINEAR",
- 2: "CUBIC",
- 3: "AREA",
- 4: "LANCZOS4",
- }[interp]
- tf = DetResize(
- target_hw=cfg["target_size"],
- keep_ratio=cfg.get("keep_ratio", True),
- interp=interp,
- )
- elif cfg["type"] == "Permute":
- tf = image_common.ToCHWImage()
- elif cfg["type"] == "PadStride":
- stride = cfg.get("stride", 32)
- tf = PadStride(stride=stride)
- elif cfg["type"] == "Pad":
- fill_value = cfg.get("fill_value", [114.0, 114.0, 114.0])
- size = cfg.get("size", [640, 640])
- tf = Pad(size=size, fill_value=fill_value)
- elif cfg['type'] == 'WarpAffine':
- input_h = cfg.get('input_h', 512)
- input_w = cfg.get('input_w', 512)
- keep_res = cfg.get('keep_res', True)
- tf = image_common.WarpAffine(input_h=input_h, input_w=input_w, keep_res=keep_res)
- else:
- raise RuntimeError(f"Unsupported type: {cfg['type']}")
- tfs.append(tf)
- return tfs
- @property
- def labels(self):
- """the labels in inner config"""
- return self.inner_cfg["label_list"]
|