| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- import numpy as np
- from PIL import Image
- from paddlex.paddleseg.datasets import Dataset
- from paddlex.paddleseg.utils.download import download_file_and_uncompress
- from paddlex.paddleseg.utils import seg_env
- from paddlex.paddleseg.cvlibs import manager
- from paddlex.paddleseg.transforms import Compose
- from paddlex.paddleseg.transforms import functional as F
- URL = "http://data.csail.mit.edu/places/ADEchallenge/ADEChallengeData2016.zip"
- @manager.DATASETS.add_component
- class ADE20K(Dataset):
- """
- ADE20K dataset `http://sceneparsing.csail.mit.edu/`.
- Args:
- transforms (list): A list of image transformations.
- dataset_root (str, optional): The ADK20K dataset directory. Default: None.
- mode (str, optional): A subset of the entire dataset. It should be one of ('train', 'val'). Default: 'train'.
- edge (bool, optional): Whether to compute edge while training. Default: False
- """
- NUM_CLASSES = 150
- def __init__(self, transforms, dataset_root=None, mode='train',
- edge=False):
- self.dataset_root = dataset_root
- self.transforms = Compose(transforms)
- mode = mode.lower()
- self.mode = mode
- self.file_list = list()
- self.num_classes = self.NUM_CLASSES
- self.ignore_index = 255
- self.edge = edge
- if mode not in ['train', 'val']:
- raise ValueError(
- "`mode` should be one of ('train', 'val') in ADE20K dataset, but got {}."
- .format(mode))
- if self.transforms is None:
- raise ValueError("`transforms` is necessary, but it is None.")
- if self.dataset_root is None:
- self.dataset_root = download_file_and_uncompress(
- url=URL,
- savepath=seg_env.DATA_HOME,
- extrapath=seg_env.DATA_HOME,
- extraname='ADEChallengeData2016')
- elif not os.path.exists(self.dataset_root):
- self.dataset_root = os.path.normpath(self.dataset_root)
- savepath, extraname = self.dataset_root.rsplit(
- sep=os.path.sep, maxsplit=1)
- self.dataset_root = download_file_and_uncompress(
- url=URL,
- savepath=savepath,
- extrapath=savepath,
- extraname=extraname)
- if mode == 'train':
- img_dir = os.path.join(self.dataset_root, 'images/training')
- label_dir = os.path.join(self.dataset_root, 'annotations/training')
- elif mode == 'val':
- img_dir = os.path.join(self.dataset_root, 'images/validation')
- label_dir = os.path.join(self.dataset_root,
- 'annotations/validation')
- img_files = os.listdir(img_dir)
- label_files = [i.replace('.jpg', '.png') for i in img_files]
- for i in range(len(img_files)):
- img_path = os.path.join(img_dir, img_files[i])
- label_path = os.path.join(label_dir, label_files[i])
- self.file_list.append([img_path, label_path])
- def __getitem__(self, idx):
- image_path, label_path = self.file_list[idx]
- if self.mode == 'val':
- im, _ = self.transforms(im=image_path)
- label = np.asarray(Image.open(label_path))
- # The class 0 is ignored. And it will equal to 255 after
- # subtracted 1, because the dtype of label is uint8.
- label = label - 1
- label = label[np.newaxis, :, :]
- return im, label
- else:
- im, label = self.transforms(im=image_path, label=label_path)
- label = label - 1
- # Recover the ignore pixels adding by transform
- label[label == 254] = 255
- if self.edge:
- edge_mask = F.mask_to_binary_edge(
- label, radius=2, num_classes=self.num_classes)
- return im, label, edge_mask
- else:
- return im, label
|