PaddleX 3.0 是飞桨精选模型的低代码开发工具,支持国内外多款主流硬件的模型训练和推理,覆盖工业、能源、金融、交通、教育等全行业,助力开发者产业实践落地。
PaddleX 3.0 集成了飞桨生态的优势能力,覆盖 7 大场景任务,构建了 16 条模型产线,提供低代码开发模式,助力开发者在多种主流硬件上实现模型全流程开发。
<th>产线类型</th>
<th>模型产线</th>
<th>产线模块</th>
<th>具体模型</th>
<td>基础产线</td>
<td>通用图像分类</td>
<td>图像分类</td>
<td>CLIP_vit_base_patch16_224<br/>CLIP_vit_large_patch14_224<details>
<summary><b>more</b></summary><br/>ConvNeXt_tiny<br/>ConvNeXt_small<br/>ConvNeXt_base_224<br/>ConvNeXt_base_384<br/>ConvNeXt_large_224<br/>ConvNeXt_large_384<br/>MobileNetV1_x0_25<br/>MobileNetV1_x0_5<br/>MobileNetV1_x0_75<br/>MobileNetV1_x1_0<br/>MobileNetV2_x0_25<br/>MobileNetV2_x0_5<br/>MobileNetV2_x1_0<br/>MobileNetV2_x1_5<br/>MobileNetV2_x2_0<br/>MobileNetV3_large_x0_35<br/>MobileNetV3_large_x0_5<br/>MobileNetV3_large_x0_75<br/>MobileNetV3_large_x1_0<br/>MobileNetV3_large_x1_25<br/>MobileNetV3_small_x0_35<br/>MobileNetV3_small_x0_5<br/>MobileNetV3_small_x0_75<br/>MobileNetV3_small_x1_0<br/>MobileNetV3_small_x1_25<br/>PP-HGNet_tiny<br/>PP-HGNet_small<br/>PP-HGNet_base<br/>PP-HGNetV2-B0<br/>PP-HGNetV2-B1<br/>PP-HGNetV2-B2<br/>PP-HGNetV2-B3<br/>PP-HGNetV2-B4<br/>PP-HGNetV2-B5<br/>PP-HGNetV2-B6<br/>PP-LCNet_x0_25<br/>PP-LCNet_x0_35<br/>PP-LCNet_x0_5<br/>PP-LCNet_x0_75<br/>PP-LCNet_x1_0<br/>PP-LCNet_x1_5<br/>PP-LCNet_x2_0<br/>PP-LCNet_x2_5<br/>PP-LCNetV2_small<br/>PP-LCNetV2_base<br/>PP-LCNetV2_large<br/>ResNet18<br/>ResNet18_vd<br/>ResNet34<br/>ResNet34_vd<br/>ResNet50<br/>ResNet50_vd<br/>ResNet101<br/>ResNet101_vd<br/>ResNet152<br/>ResNet152_vd<br/>ResNet200_vd<br/>SwinTransformer_tiny_patch4_window7_224<br/>SwinTransformer_small_patch4_window7_224<br/>SwinTransformer_base_patch4_window7_224<br/>SwinTransformer_base_patch4_window12_384<br/>SwinTransformer_large_patch4_window7_224<br/>SwinTransformer_large_patch4_window12_384</details></td>
<td>基础产线</td>
<td>通用目标检测</td>
<td>目标检测</td>
<td>PicoDet-S<br/>PicoDet-L<details>
<summary><b>more</b></summary><br/>PP-YOLOE_plus-S<br/>PP-YOLOE_plus-M<br/>PP-YOLOE_plus-L<br/>PP-YOLOE_plus-X<br/>RT-DETR-L<br/>RT-DETR-H<br/>RT-DETR-X<br/>RT-DETR-R18<br/>RT-DETR-R50<br/>YOLOv3-DarkNet53<br/>YOLOv3-MobileNetV3<br/>YOLOv3-ResNet50_vd_DCN<br/>YOLOX-L<br/>YOLOX-M<br/>YOLOX-N<br/>YOLOX-S<br/>YOLOX-T<br/>YOLOX-X</details></td>
<td>基础产线</td>
<td>通用语义分割</td>
<td>语义分割</td>
<td>OCRNet_HRNet-W48<br/>OCRNet_HRNet-W18<br/>PP-LiteSeg-T<details>
<summary><b>more</b></summary><br/>Deeplabv3-R50<br/>Deeplabv3-R101<br/>Deeplabv3_Plus-R50<br/>Deeplabv3_Plus-R101<br/>SeaFormer_tiny<br/
>SeaFormer_small<br/>SeaFormer_base<br/>SeaFormer_large<br/
>SegFormer-B0<br/>SegFormer-B1<br/>SegFormer-B2<br/
>SegFormer-B3<br/>SegFormer-B4<br/>SegFormer-B5</details></td>
<td>基础产线</td>
<td>通用实例分割</td>
<td>实例分割</td>
<td>Mask-RT-DETR-L<br/>Mask-RT-DETR-H</td>
<td rowspan="3">基础产线</td>
<td rowspan="3">通用OCR</td>
<td>文本检测</td>
<td>PP-OCRv4_mobile_det<br/>PP-OCRv4_server_det</td>
<td>文本识别</td>
<td>PP-OCRv4_mobile_rec<br/>PP-OCRv4_server_rec</td>
<td>公式识别</td>
<td>LaTeX_OCR_rec</td>
<td rowspan="4">基础产线</td>
<td rowspan="4">通用表格识别</td>
<td>版面区域检测</td>
<td>PicoDet layout_1x</td>
<td>表格识别</td>
<td>SLANet</td>
<td>文本检测</td>
<td>PP-OCRv4_mobile_det<br/>PP-OCRv4_server_det</td>
<td>文本识别</td>
<td>PP-OCRv4_mobile_rec<br/>PP-OCRv4_server_rec</td>
<td>基础产线</td>
<td>时序预测</td>
<td>时序预测</td>
<td>DLinear<br/>Nonstationary<br/>TiDE<br/>PatchTST<br/>TimesNet</td>
<td>基础产线</td>
<td>时序异常检测</td>
<td>时序异常检测</td>
<td>DLinear_ad<br/>Nonstationary_ad<br/>AutoEncoder_ad<br/>PatchTST_ad<br/>TimesNet_ad</td>
<td>基础产线</td>
<td>时序分类</td>
<td>时序分类</td>
<td>TimesNet_cls</td>
<td>特色产线</td>
<td>大模型半监督学习-图像分类</td>
<td>大模型半监督学习-图像分类</td>
<td>CLIP_vit_base_patch16_224<br/>MobileNetV3_small_x1_0<br/><details><summary><b>more</b></summary>PP-HGNet_small<br/>PP-HGNetV2-B0<br/>PP-HGNetV2-B4<br/>PP-HGNetV2-B6<br/>PP-LCNet_x1_0<br/>ResNet50<br/>SwinTransformer_base_patch4_window7_224</details></td>
<td>特色产线</td>
<td>大模型半监督学习-目标检测</td>
<td>大模型半监督学习-目标检测</td>
<td>PicoDet-S<br/>PicoDet-L<details>
<summary><b>more</b></summary><br/>PP-YOLOE plus-S<br/>PP-YOLOE_plus-L<br/>RT-DETR-H</details></td>
<td rowspan="2">特色产线</td>
<td rowspan="2">大模型半监督学习-OCR</td>
<td>文本检测</td>
<td>PP-OCRv4_mobile_det<br/>PP-OCRv4_server_det</td>
<td>大模型半监督学习-文本识别</td>
<td>PP-OCRv4_mobile_rec<br/>PP-OCRv4_server_rec</td>
<td rowspan="3">特色产线</td>
<td rowspan="3">通用场景信息抽取v2<br>(PP-ChatOCRv2-common)</td>
<td>文本识别</td>
<td>PP-OCRv4_mobile_rec<br/>PP-OCRv4_server_rec</td>
<td>文本检测</td>
<td>PP-OCRv4_mobile_det<br/>PP-OCRv4_server_det</td>
<td>prompt工程</td>
<td>-</td>
<td rowspan="5">特色产线</td>
<td rowspan="5">文档场景信息抽取v2<br>(PP-ChatOCRv2-doc)</td>
<td>版面分析</td>
<td>PicoDet layout_1x</td>
<td>文本检测</td>
<td>PP-OCRv4_mobile_det<br/>PP-OCRv4_server_det</td>
<td>文本识别</td>
<td>PP-OCRv4_mobile_rec<br/>PP-OCRv4_server_rec</td>
<td>表格识别</td>
<td>SLANet</td>
<td>prompt工程</td>
<td>-</td>
<td>特色产线</td>
<td>多模型融合时序预测v2<br>(PP-TSv2_forecast)</td>
<td>时序预测</td>
<td>多模型融合时序预测</td>
<td>特色产线</td>
<td>多模型融合时序异常检测v2<br>(PP-TSv2_anomaly)</td>
<td>时序异常检测</td>
<td>多模型融合时序异常检测</td>
PaddleX 3.0 单模型开发工具支持开发者以低代码的方式快速实现模型的开发和优化,包括数据准备、模型训练/评估、模型推理的使用方法,方便低成本集成到模型产线中。PaddleX3.0 支持的模型可以参考 PaddleX 模型库。