| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647 |
- import os
- # 选择使用0号卡
- os.environ['CUDA_VISIBLE_DEVICES'] = '0'
- from paddlex.cls import transforms
- import paddlex as pdx
- # 下载和解压蔬菜分类数据集
- veg_dataset = 'https://bj.bcebos.com/paddlex/datasets/vegetables_cls.tar.gz'
- pdx.utils.download_and_decompress(veg_dataset, path='./')
- # 定义训练和验证时的transforms
- # API说明: https://paddlex.readthedocs.io/zh_CN/latest/apis/transforms/cls_transforms.html#composedclstransforms
- train_transforms = transforms.ComposedClsTransforms(mode='train', crop_size=[224, 224])
- eval_transforms = transforms.ComposedClsTransforms(mode='eval', crop_size=[224, 224])
- # 定义训练和验证所用的数据集
- # API说明: https://paddlex.readthedocs.io/zh_CN/latest/apis/datasets/classification.html#imagenet
- train_dataset = pdx.datasets.ImageNet(
- data_dir='vegetables_cls',
- file_list='vegetables_cls/train_list.txt',
- label_list='vegetables_cls/labels.txt',
- transforms=train_transforms,
- shuffle=True)
- eval_dataset = pdx.datasets.ImageNet(
- data_dir='vegetables_cls',
- file_list='vegetables_cls/val_list.txt',
- label_list='vegetables_cls/labels.txt',
- transforms=eval_transforms)
- # 初始化模型,并进行训练
- # 可使用VisualDL查看训练指标
- # VisualDL启动方式: visualdl --logdir output/mobilenetv2/vdl_log --port 8001
- # 浏览器打开 https://0.0.0.0:8001即可
- # 其中0.0.0.0为本机访问,如为远程服务, 改成相应机器IP
- # API说明: https://paddlex.readthedocs.io/zh_CN/latest/apis/models/classification.html#resnet50
- model = pdx.cls.MobileNetV2(num_classes=len(train_dataset.labels))
- model.train(
- num_epochs=10,
- train_dataset=train_dataset,
- train_batch_size=32,
- eval_dataset=eval_dataset,
- lr_decay_epochs=[4, 6, 8],
- learning_rate=0.025,
- save_dir='output/mobilenetv2',
- use_vdl=True)
|