mask_rcnn_r50_fpn.py 1.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748
  1. import os
  2. # 选择使用0号卡
  3. os.environ['CUDA_VISIBLE_DEVICES'] = '0'
  4. from paddlex.det import transforms
  5. import paddlex as pdx
  6. # 下载和解压小度熊分拣数据集
  7. xiaoduxiong_dataset = 'https://bj.bcebos.com/paddlex/datasets/xiaoduxiong_ins_det.tar.gz'
  8. pdx.utils.download_and_decompress(xiaoduxiong_dataset, path='./')
  9. # 定义训练和验证时的transforms
  10. # API说明: https://paddlex.readthedocs.io/zh_CN/latest/apis/transforms/det_transforms.html#composedrcnntransforms
  11. train_transforms = transforms.ComposedRCNNTransforms(mode='train', min_max_size=[800, 1333])
  12. eval_transforms = transforms.ComposedRCNNTransforms(mode='eval', min_max_size=[800, 1333])
  13. # 定义训练和验证所用的数据集
  14. # API说明: https://paddlex.readthedocs.io/zh_CN/latest/apis/datasets/detection.html#cocodetection
  15. train_dataset = pdx.datasets.CocoDetection(
  16. data_dir='xiaoduxiong_ins_det/JPEGImages',
  17. ann_file='xiaoduxiong_ins_det/train.json',
  18. transforms=train_transforms,
  19. shuffle=True)
  20. eval_dataset = pdx.datasets.CocoDetection(
  21. data_dir='xiaoduxiong_ins_det/JPEGImages',
  22. ann_file='xiaoduxiong_ins_det/val.json',
  23. transforms=eval_transforms)
  24. # 初始化模型,并进行训练
  25. # 可使用VisualDL查看训练指标
  26. # VisualDL启动方式: visualdl --logdir output/mask_rcnn_r50_fpn/vdl_log --port 8001
  27. # 浏览器打开 https://0.0.0.0:8001即可
  28. # 其中0.0.0.0为本机访问,如为远程服务, 改成相应机器IP
  29. # num_classes 需要设置为包含背景类的类别数,即: 目标类别数量 + 1
  30. # API说明: https://paddlex.readthedocs.io/zh_CN/latest/apis/models/instance_segmentation.html#maskrcnn
  31. num_classes = len(train_dataset.labels) + 1
  32. model = pdx.det.MaskRCNN(num_classes=num_classes)
  33. model.train(
  34. num_epochs=12,
  35. train_dataset=train_dataset,
  36. train_batch_size=1,
  37. eval_dataset=eval_dataset,
  38. learning_rate=0.00125,
  39. warmup_steps=10,
  40. lr_decay_epochs=[8, 11],
  41. save_dir='output/mask_rcnn_r50_fpn',
  42. use_vdl=True)