yolov3_darknet53.py 1.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748
  1. import os
  2. # 选择使用0号卡
  3. os.environ['CUDA_VISIBLE_DEVICES'] = '0'
  4. from paddlex.det import transforms
  5. import paddlex as pdx
  6. # 下载和解压昆虫检测数据集
  7. insect_dataset = 'https://bj.bcebos.com/paddlex/datasets/insect_det.tar.gz'
  8. pdx.utils.download_and_decompress(insect_dataset, path='./')
  9. # 定义训练和验证时的transforms
  10. # API说明: https://paddlex.readthedocs.io/zh_CN/latest/apis/transforms/det_transforms.html#composedyolotransforms
  11. train_transforms = transforms.ComposedYOLOv3Transforms(mode='train', shape=[608, 608])
  12. eval_transforms = transforms.ComposedYOLOv3Transforms(mode='eva', shape=[608, 608])
  13. # 定义训练和验证所用的数据集
  14. # API说明: https://paddlex.readthedocs.io/zh_CN/latest/apis/datasets/detection.html#vocdetection
  15. train_dataset = pdx.datasets.VOCDetection(
  16. data_dir='insect_det',
  17. file_list='insect_det/train_list.txt',
  18. label_list='insect_det/labels.txt',
  19. transforms=train_transforms,
  20. shuffle=True)
  21. eval_dataset = pdx.datasets.VOCDetection(
  22. data_dir='insect_det',
  23. file_list='insect_det/val_list.txt',
  24. label_list='insect_det/labels.txt',
  25. transforms=eval_transforms)
  26. # 初始化模型,并进行训练
  27. # 可使用VisualDL查看训练指标
  28. # VisualDL启动方式: visualdl --logdir output/yolov3_darknet/vdl_log --port 8001
  29. # 浏览器打开 https://0.0.0.0:8001即可
  30. # 其中0.0.0.0为本机访问,如为远程服务, 改成相应机器IP
  31. # API说明: https://paddlex.readthedocs.io/zh_CN/latest/apis/models/detection.html#yolov3
  32. num_classes = len(train_dataset.labels)
  33. model = pdx.det.YOLOv3(num_classes=num_classes, backbone='DarkNet53')
  34. model.train(
  35. num_epochs=270,
  36. train_dataset=train_dataset,
  37. train_batch_size=8,
  38. eval_dataset=eval_dataset,
  39. learning_rate=0.000125,
  40. lr_decay_epochs=[210, 240],
  41. save_dir='output/yolov3_darknet53',
  42. use_vdl=True)