| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647 |
- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from .interpretation_algorithms import CAM, LIME, NormLIME
- from .normlime_base import precompute_normlime_weights
- class Interpretation(object):
- """
- Base class for all interpretation algorithms.
- """
- def __init__(self, interpretation_algorithm_name, predict_fn, label_names,
- **kwargs):
- supported_algorithms = {'cam': CAM, 'lime': LIME, 'normlime': NormLIME}
- self.algorithm_name = interpretation_algorithm_name.lower()
- assert self.algorithm_name in supported_algorithms.keys()
- self.predict_fn = predict_fn
- # initialization for the interpretation algorithm.
- self.algorithm = supported_algorithms[self.algorithm_name](
- self.predict_fn, label_names, **kwargs)
- def interpret(self, data_, visualization=True, save_dir='./'):
- """
- Args:
- data_: data_ can be a path or numpy.ndarray.
- visualization: whether to show using matplotlib.
- save_dir: dir to save figure if save_to_disk is True.
- Returns:
- """
- return self.algorithm.interpret(data_, visualization, save_dir)
|