| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453 |
- # zhch/ppstructurev3_dual_gpu_optimized.py
- import json
- import time
- import os
- import glob
- import traceback
- from pathlib import Path
- from typing import List, Dict, Any, Tuple
- from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor, as_completed
- from multiprocessing import Queue, Manager, Process
- import cv2
- import numpy as np
- from paddlex import create_pipeline
- from tqdm import tqdm
- import threading
- import queue
- import paddle
- from dotenv import load_dotenv
- load_dotenv(override=True)
- class PPStructureV3DualGPUPredictor:
- """
- PP-StructureV3双GPU并行预测器
- """
- def __init__(self, pipeline_config_path: str = "PP-StructureV3", output_path: str = "output", gpu_id: int = 0):
- """
- 初始化预测器
-
- Args:
- pipeline_config_path: PaddleX pipeline配置文件路径
- output_path: 输出路径
- gpu_id: GPU设备ID (0 或 1)
- """
- self.pipeline_config = pipeline_config_path
- self.pipeline = None # 延迟初始化
- self.output_path = output_path
- self.gpu_id = gpu_id
- self.device = f"gpu:{gpu_id}"
- def _ensure_pipeline(self):
- """确保pipeline已初始化(线程安全)"""
- if self.pipeline is None:
- # 设置当前GPU
- paddle.device.set_device(f"gpu:{self.gpu_id}")
- self.pipeline = create_pipeline(pipeline=self.pipeline_config)
- print(f"Pipeline初始化完成 - GPU:{self.gpu_id}")
- def process_single_image(self, image_path: str) -> Dict[str, Any]:
- """
- 处理单张图像
-
- Args:
- image_path: 图像路径
-
- Returns:
- 处理结果{"image_path": str, "success": bool, "processing_time": float, "error": str}
- """
- try:
- # 确保pipeline已初始化
- self._ensure_pipeline()
-
- # 读取图像获取尺寸信息
- image = cv2.imread(image_path)
- if image is None:
- return {
- "image_path": Path(image_path).name,
- "error": "无法读取图像",
- "success": False,
- "processing_time": 0,
- "gpu_id": self.gpu_id
- }
-
- height, width = image.shape[:2]
-
- # 运行PaddleX pipeline
- start_time = time.time()
-
- output = self.pipeline.predict(
- input=image_path,
- device=self.device,
- use_doc_orientation_classify=True,
- use_doc_unwarping=False,
- use_seal_recognition=True,
- use_chart_recognition=True,
- use_table_recognition=True,
- use_formula_recognition=True,
- )
-
- # 保存结果
- for res in output:
- res.save_to_json(save_path=self.output_path)
- res.save_to_markdown(save_path=self.output_path)
-
- process_time = time.time() - start_time
-
- # 返回处理结果
- return {
- "image_path": Path(image_path).name,
- "processing_time": process_time,
- "success": True,
- "gpu_id": self.gpu_id
- }
-
- except Exception as e:
- return {
- "image_path": Path(image_path).name,
- "error": str(e),
- "success": False,
- "processing_time": 0,
- "gpu_id": self.gpu_id
- }
-
- def process_batch(self, image_paths: List[str]) -> List[Dict[str, Any]]:
- """
- 批处理图像
-
- Args:
- image_paths: 图像路径列表
-
- Returns:
- 结果列表
- """
- results = []
-
- for image_path in image_paths:
- result = self.process_single_image(image_path)
- results.append(result)
-
- return results
- class DualGPUThreadWorker:
- """双GPU线程工作器 - 每个线程维护自己的pipeline实例"""
-
- def __init__(self, pipeline_config: str, output_path: str, gpu_id: int, worker_id: int):
- self.worker_id = worker_id
- self.gpu_id = gpu_id
- self.predictor = PPStructureV3DualGPUPredictor(
- pipeline_config,
- output_path=f"{output_path}/gpu{gpu_id}_worker_{worker_id}",
- gpu_id=gpu_id
- )
- self.task_queue = queue.Queue()
- self.result_queue = queue.Queue()
- self.running = True
-
- def add_batch(self, batch: List[str]):
- """添加批处理任务"""
- self.task_queue.put(batch)
-
- def get_results(self) -> List[Dict[str, Any]]:
- """获取处理结果"""
- results = []
- while not self.result_queue.empty():
- try:
- result = self.result_queue.get_nowait()
- results.extend(result)
- except queue.Empty:
- break
- return results
-
- def worker_loop(self):
- """工作循环"""
- print(f"GPU{self.gpu_id} Worker{self.worker_id} 开始工作")
-
- while self.running:
- try:
- batch = self.task_queue.get(timeout=1.0)
- if batch is None: # 结束信号
- break
-
- # 处理批次
- batch_results = self.predictor.process_batch(batch)
- self.result_queue.put(batch_results)
-
- except queue.Empty:
- continue
- except Exception as e:
- print(f"GPU{self.gpu_id} Worker{self.worker_id} 处理出错: {e}")
-
- def stop(self):
- """停止工作线程"""
- self.running = False
- self.task_queue.put(None) # 发送结束信号
- def parallel_process_with_dual_gpu(image_paths: List[str],
- batch_size: int = 4,
- workers_per_gpu: int = 2, # 每个GPU的worker数量
- pipeline_config: str = "PP-StructureV3",
- output_path: str = "./output") -> List[Dict[str, Any]]:
- """
- 使用双GPU优化的多线程并行处理
-
- Args:
- image_paths: 图像路径列表
- batch_size: 批处理大小
- workers_per_gpu: 每个GPU的worker数量(推荐2个)
- pipeline_config: pipeline配置
- output_path: 输出路径
-
- Returns:
- 处理结果列表
- """
- # 确保输出目录存在
- os.makedirs(output_path, exist_ok=True)
-
- # 检查可用GPU
- try:
- gpu_count = paddle.device.cuda.device_count()
- print(f"检测到 {gpu_count} 个GPU")
-
- if gpu_count < 2:
- print("警告:检测到的GPU数量少于2个,建议检查CUDA配置")
- available_gpus = list(range(gpu_count))
- else:
- available_gpus = [0, 1] # 使用GPU 0和1
-
- except Exception as e:
- print(f"GPU检测失败: {e}")
- available_gpus = [0] # 降级为单GPU
-
- total_workers = len(available_gpus) * workers_per_gpu
- print(f"使用GPU: {available_gpus}")
- print(f"每GPU Worker数: {workers_per_gpu}")
- print(f"总Worker数: {total_workers}")
-
- # 将图像路径分批
- batches = [image_paths[i:i + batch_size] for i in range(0, len(image_paths), batch_size)]
-
- # 创建工作线程
- workers = []
- threads = []
-
- worker_id = 0
- for gpu_id in available_gpus:
- for i in range(workers_per_gpu):
- worker = DualGPUThreadWorker(pipeline_config, output_path, gpu_id, worker_id)
- workers.append(worker)
-
- thread = threading.Thread(target=worker.worker_loop, name=f"GPU{gpu_id}_Worker{worker_id}")
- thread.daemon = True
- thread.start()
- threads.append(thread)
- worker_id += 1
-
- print(f"启动了 {len(workers)} 个工作线程,分布在 {len(available_gpus)} 个GPU上")
-
- # 分发任务
- all_results = []
- total_images = len(image_paths)
- completed_count = 0
-
- try:
- with tqdm(total=total_images, desc="双GPU处理图像", unit="张") as pbar:
- # 轮流分发批次到不同的worker
- for i, batch in enumerate(batches):
- worker_id = i % len(workers)
- workers[worker_id].add_batch(batch)
-
- # 等待所有任务完成
- while completed_count < total_images:
- time.sleep(0.1) # 短暂等待
-
- # 收集结果
- for worker in workers:
- batch_results = worker.get_results()
- if batch_results:
- all_results.extend(batch_results)
- completed_count += len(batch_results)
- pbar.update(len(batch_results))
-
- # 更新进度条
- success_count = sum(1 for r in batch_results if r.get('success', False))
-
- # 按GPU统计
- gpu_stats = {}
- for r in all_results:
- gpu_id = r.get('gpu_id', 'unknown')
- if gpu_id not in gpu_stats:
- gpu_stats[gpu_id] = {'success': 0, 'total': 0}
- gpu_stats[gpu_id]['total'] += 1
- if r.get('success', False):
- gpu_stats[gpu_id]['success'] += 1
-
- gpu_info = ', '.join([f"GPU{k}:{v['success']}/{v['total']}" for k, v in gpu_stats.items()])
-
- pbar.set_postfix({
- 'recent_success': f"{success_count}/{len(batch_results)}",
- 'gpu_distribution': gpu_info
- })
-
- finally:
- # 停止所有工作线程
- for worker in workers:
- worker.stop()
-
- # 等待线程结束
- for thread in threads:
- thread.join(timeout=3.0)
-
- return all_results
- def monitor_gpu_memory():
- """监控GPU内存使用情况"""
- try:
- for gpu_id in [0, 1]:
- paddle.device.set_device(f"gpu:{gpu_id}")
- allocated = paddle.device.cuda.memory_allocated() / 1024**3
- reserved = paddle.device.cuda.memory_reserved() / 1024**3
- print(f"GPU {gpu_id} - 已分配: {allocated:.2f}GB, 已预留: {reserved:.2f}GB")
- except Exception as e:
- print(f"GPU内存监控失败: {e}")
- def main():
- """主函数 - 双GPU优化的并行处理"""
-
- # 配置参数
- dataset_path = "../../OmniDocBench/OpenDataLab___OmniDocBench/images"
- output_dir = "./OmniDocBench_Results_DualGPU"
- pipeline_config = "PP-StructureV3"
-
- # 双GPU处理参数
- batch_size = 4 # 批处理大小
- workers_per_gpu = 1 # 每个GPU的worker数量(24GB GPU推荐2个)
-
- # 确保输出目录存在
- print(f"输出目录: {Path(output_dir).absolute()}")
- os.makedirs(output_dir, exist_ok=True)
-
- dataset_path = Path(dataset_path).resolve()
- output_dir = Path(output_dir).resolve()
-
- print("="*60)
- print("OmniDocBench 双GPU优化并行处理开始")
- print("="*60)
- print(f"数据集路径: {dataset_path}")
- print(f"输出目录: {output_dir}")
- print(f"批处理大小: {batch_size}")
- print(f"每GPU Worker数: {workers_per_gpu}")
- print(f"总Worker数: {workers_per_gpu * 2}")
-
- # 监控初始GPU状态
- print("\n初始GPU内存状态:")
- monitor_gpu_memory()
-
- # 查找所有图像文件
- image_extensions = ['*.jpg', '*.jpeg', '*.png', '*.bmp', '*.tiff']
- image_files = []
-
- for ext in image_extensions:
- image_files.extend(glob.glob(os.path.join(dataset_path, ext)))
-
- print(f"\n找到 {len(image_files)} 个图像文件")
-
- if not image_files:
- print("未找到任何图像文件,程序终止")
- return
-
- # 限制处理数量用于测试
- # image_files = image_files[:40] # 取消注释以限制处理数量
-
- # 开始处理
- start_time = time.time()
-
- try:
- print("\n使用双GPU优化并行处理...")
- results = parallel_process_with_dual_gpu(
- image_files,
- batch_size,
- workers_per_gpu,
- pipeline_config,
- str(output_dir)
- )
-
- total_time = time.time() - start_time
-
- # 统计信息
- success_count = sum(1 for r in results if r.get('success', False))
- error_count = len(results) - success_count
- total_processing_time = sum(r.get('processing_time', 0) for r in results if r.get('success', False))
- avg_processing_time = total_processing_time / success_count if success_count > 0 else 0
-
- # 按GPU统计
- gpu_stats = {}
- for r in results:
- gpu_id = r.get('gpu_id', 'unknown')
- if gpu_id not in gpu_stats:
- gpu_stats[gpu_id] = {'success': 0, 'total': 0, 'total_time': 0}
- gpu_stats[gpu_id]['total'] += 1
- if r.get('success', False):
- gpu_stats[gpu_id]['success'] += 1
- gpu_stats[gpu_id]['total_time'] += r.get('processing_time', 0)
-
- # 保存结果统计
- stats = {
- "total_files": len(image_files),
- "success_count": success_count,
- "error_count": error_count,
- "success_rate": success_count / len(image_files),
- "total_time": total_time,
- "avg_processing_time": avg_processing_time,
- "throughput": len(image_files) / total_time,
- "batch_size": batch_size,
- "workers_per_gpu": workers_per_gpu,
- "total_workers": workers_per_gpu * 2,
- "gpu_stats": gpu_stats,
- "optimization": "双GPU多线程并行"
- }
-
- # 保存最终结果
- output_file = os.path.join(output_dir, f"OmniDocBench_DualGPU_batch{batch_size}_workers{workers_per_gpu}.json")
- final_results = {
- "results": results,
- "stats": stats
- }
-
- with open(output_file, 'w', encoding='utf-8') as f:
- json.dump(final_results, f, ensure_ascii=False, indent=2)
-
- print("\n" + "="*60)
- print("双GPU优化并行处理完成!")
- print("="*60)
- print(f"总文件数: {len(image_files)}")
- print(f"成功处理: {success_count}")
- print(f"失败数量: {error_count}")
- print(f"成功率: {success_count / len(image_files) * 100:.2f}%")
- print(f"总耗时: {total_time:.2f}秒")
- print(f"平均处理时间: {avg_processing_time:.2f}秒/张")
- print(f"吞吐量: {len(image_files) / total_time:.2f}张/秒")
- print(f"Worker数: {workers_per_gpu * 2} (每GPU {workers_per_gpu}个)")
-
- # GPU统计
- print(f"\nGPU分布统计:")
- for gpu_id, stat in gpu_stats.items():
- if stat['total'] > 0:
- gpu_success_rate = stat['success'] / stat['total'] * 100
- gpu_avg_time = stat['total_time'] / stat['success'] if stat['success'] > 0 else 0
- print(f" GPU {gpu_id}: {stat['success']}/{stat['total']} 成功 "
- f"({gpu_success_rate:.1f}%), 平均 {gpu_avg_time:.2f}s/张")
-
- print(f"\n结果保存至: {output_file}")
-
- # 监控最终GPU状态
- print("\n最终GPU内存状态:")
- monitor_gpu_memory()
-
- except Exception as e:
- print(f"处理过程中发生错误: {str(e)}")
- traceback.print_exc()
- if __name__ == "__main__":
- main()
|