segmenter.py 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597
  1. # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. import math
  15. import os.path as osp
  16. import numpy as np
  17. from collections import OrderedDict
  18. import paddle
  19. import paddle.nn.functional as F
  20. from paddle.static import InputSpec
  21. import paddleseg
  22. import paddlex
  23. from paddlex.cv.transforms import arrange_transforms
  24. from paddlex.utils import get_single_card_bs, DisablePrint
  25. import paddlex.utils.logging as logging
  26. from .base import BaseModel
  27. from .utils import seg_metrics as metrics
  28. from paddlex.utils.checkpoint import seg_pretrain_weights_dict
  29. from paddlex.cv.transforms import Decode, Resize
  30. __all__ = ["UNet", "DeepLabV3P", "FastSCNN", "HRNet", "BiSeNetV2"]
  31. class BaseSegmenter(BaseModel):
  32. def __init__(self,
  33. model_name,
  34. num_classes=2,
  35. use_mixed_loss=False,
  36. **params):
  37. self.init_params = locals()
  38. super(BaseSegmenter, self).__init__('segmenter')
  39. if not hasattr(paddleseg.models, model_name):
  40. raise Exception("ERROR: There's no model named {}.".format(
  41. model_name))
  42. self.model_name = model_name
  43. self.num_classes = num_classes
  44. self.use_mixed_loss = use_mixed_loss
  45. self.losses = None
  46. self.labels = None
  47. self.net = self.build_net(**params)
  48. self.find_unused_parameters = True
  49. def build_net(self, **params):
  50. # TODO: when using paddle.utils.unique_name.guard,
  51. # DeepLabv3p and HRNet will raise a error
  52. net = paddleseg.models.__dict__[self.model_name](
  53. num_classes=self.num_classes, **params)
  54. return net
  55. def _fix_transforms_shape(self, image_shape):
  56. if hasattr(self, 'test_transforms'):
  57. if self.test_transforms is not None:
  58. has_resize_op = False
  59. resize_op_idx = -1
  60. normalize_op_idx = len(self.test_transforms.transforms)
  61. for idx, op in enumerate(self.test_transforms.transforms):
  62. name = op.__class__.__name__
  63. if name == 'Normalize':
  64. normalize_op_idx = idx
  65. if 'Resize' in name:
  66. has_resize_op = True
  67. resize_op_idx = idx
  68. if not has_resize_op:
  69. self.test_transforms.transforms.insert(
  70. normalize_op_idx, Resize(target_size=image_shape))
  71. else:
  72. self.test_transforms.transforms[resize_op_idx] = Resize(
  73. target_size=image_shape)
  74. def _get_test_inputs(self, image_shape):
  75. if image_shape is not None:
  76. if len(image_shape) == 2:
  77. image_shape = [None, 3] + image_shape
  78. self._fix_transforms_shape(image_shape[-2:])
  79. else:
  80. image_shape = [None, 3, -1, -1]
  81. input_spec = [
  82. InputSpec(
  83. shape=image_shape, name='image', dtype='float32')
  84. ]
  85. return input_spec
  86. def run(self, net, inputs, mode):
  87. net_out = net(inputs[0])
  88. logit = net_out[0]
  89. outputs = OrderedDict()
  90. if mode == 'test':
  91. origin_shape = inputs[1]
  92. score_map = self._postprocess(
  93. logit, origin_shape, transforms=inputs[2])
  94. label_map = paddle.argmax(
  95. score_map, axis=1, keepdim=True, dtype='int32')
  96. score_map = paddle.max(score_map, axis=1, keepdim=True)
  97. score_map = paddle.squeeze(score_map)
  98. label_map = paddle.squeeze(label_map)
  99. outputs = {'label_map': label_map, 'score_map': score_map}
  100. if mode == 'eval':
  101. pred = paddle.argmax(logit, axis=1, keepdim=True, dtype='int32')
  102. label = inputs[1]
  103. origin_shape = [label.shape[-2:]]
  104. # TODO: 替换cv2后postprocess移出run
  105. pred = self._postprocess(pred, origin_shape, transforms=inputs[2])
  106. intersect_area, pred_area, label_area = metrics.calculate_area(
  107. pred, label, self.num_classes)
  108. outputs['intersect_area'] = intersect_area
  109. outputs['pred_area'] = pred_area
  110. outputs['label_area'] = label_area
  111. if mode == 'train':
  112. loss_list = metrics.loss_computation(
  113. logits_list=net_out, labels=inputs[1], losses=self.losses)
  114. loss = sum(loss_list)
  115. outputs['loss'] = loss
  116. return outputs
  117. def default_loss(self):
  118. if isinstance(self.use_mixed_loss, bool):
  119. if self.use_mixed_loss:
  120. losses = [
  121. paddleseg.models.CrossEntropyLoss(),
  122. paddleseg.models.LovaszSoftmaxLoss()
  123. ]
  124. coef = [.8, .2]
  125. loss_type = [
  126. paddleseg.models.MixedLoss(
  127. losses=losses, coef=coef),
  128. ]
  129. else:
  130. loss_type = [paddleseg.models.CrossEntropyLoss()]
  131. else:
  132. losses, coef = list(zip(*self.use_mixed_loss))
  133. if not set(losses).issubset(
  134. ['CrossEntropyLoss', 'DiceLoss', 'LovaszSoftmaxLoss']):
  135. raise ValueError(
  136. "Only 'CrossEntropyLoss', 'DiceLoss', 'LovaszSoftmaxLoss' are supported."
  137. )
  138. losses = [getattr(paddleseg.models, loss)() for loss in losses]
  139. loss_type = [
  140. paddleseg.models.MixedLoss(
  141. losses=losses, coef=list(coef))
  142. ]
  143. if self.model_name == 'FastSCNN':
  144. loss_type *= 2
  145. loss_coef = [1.0, 0.4]
  146. elif self.model_name == 'BiSeNetV2':
  147. loss_type *= 5
  148. loss_coef = [1.0] * 5
  149. else:
  150. loss_coef = [1.0]
  151. losses = {'types': loss_type, 'coef': loss_coef}
  152. return losses
  153. def default_optimizer(self,
  154. parameters,
  155. learning_rate,
  156. num_epochs,
  157. num_steps_each_epoch,
  158. lr_decay_power=0.9):
  159. decay_step = num_epochs * num_steps_each_epoch
  160. lr_scheduler = paddle.optimizer.lr.PolynomialDecay(
  161. learning_rate, decay_step, end_lr=0, power=lr_decay_power)
  162. optimizer = paddle.optimizer.Momentum(
  163. learning_rate=lr_scheduler,
  164. parameters=parameters,
  165. momentum=0.9,
  166. weight_decay=4e-5)
  167. return optimizer
  168. def train(self,
  169. num_epochs,
  170. train_dataset,
  171. train_batch_size=2,
  172. eval_dataset=None,
  173. optimizer=None,
  174. save_interval_epochs=1,
  175. log_interval_steps=2,
  176. save_dir='output',
  177. pretrain_weights='CITYSCAPES',
  178. learning_rate=0.01,
  179. lr_decay_power=0.9,
  180. early_stop=False,
  181. early_stop_patience=5,
  182. use_vdl=True):
  183. """
  184. Train the model.
  185. Args:
  186. num_epochs(int): The number of epochs.
  187. train_dataset(paddlex.dataset): Training dataset.
  188. train_batch_size(int, optional): Total batch size among all cards used in training. Defaults to 2.
  189. eval_dataset(paddlex.dataset, optional):
  190. Evaluation dataset. If None, the model will not be evaluated furing training process. Defaults to None.
  191. optimizer(paddle.optimizer.Optimizer or None, optional):
  192. Optimizer used in training. If None, a default optimizer is used. Defaults to None.
  193. save_interval_epochs(int, optional): Epoch interval for saving the model. Defaults to 1.
  194. log_interval_steps(int, optional): Step interval for printing training information. Defaults to 10.
  195. save_dir(str, optional): Directory to save the model. Defaults to 'output'.
  196. pretrain_weights(str or None, optional):
  197. None or name/path of pretrained weights. If None, no pretrained weights will be loaded. Defaults to 'IMAGENET'.
  198. learning_rate(float, optional): Learning rate for training. Defaults to .025.
  199. lr_decay_power(float, optional): Learning decay power. Defaults to .9.
  200. early_stop(bool, optional): Whether to adopt early stop strategy. Defaults to False.
  201. early_stop_patience(int, optional): Early stop patience. Defaults to 5.
  202. use_vdl(bool, optional): Whether to use VisualDL to monitor the training process. Defaults to True.
  203. """
  204. self.labels = train_dataset.labels
  205. if self.losses is None:
  206. self.losses = self.default_loss()
  207. if optimizer is None:
  208. num_steps_each_epoch = train_dataset.num_samples // train_batch_size
  209. self.optimizer = self.default_optimizer(
  210. self.net.parameters(), learning_rate, num_epochs,
  211. num_steps_each_epoch, lr_decay_power)
  212. else:
  213. self.optimizer = optimizer
  214. if pretrain_weights is not None and not osp.exists(pretrain_weights):
  215. if pretrain_weights not in seg_pretrain_weights_dict[
  216. self.model_name]:
  217. logging.warning(
  218. "Path of pretrain_weights('{}') does not exist!".format(
  219. pretrain_weights))
  220. logging.warning("Pretrain_weights is forcibly set to '{}'. "
  221. "If don't want to use pretrain weights, "
  222. "set pretrain_weights to be None.".format(
  223. seg_pretrain_weights_dict[self.model_name][
  224. 0]))
  225. pretrain_weights = seg_pretrain_weights_dict[self.model_name][
  226. 0]
  227. pretrained_dir = osp.join(save_dir, 'pretrain')
  228. self.net_initialize(
  229. pretrain_weights=pretrain_weights, save_dir=pretrained_dir)
  230. self.train_loop(
  231. num_epochs=num_epochs,
  232. train_dataset=train_dataset,
  233. train_batch_size=train_batch_size,
  234. eval_dataset=eval_dataset,
  235. save_interval_epochs=save_interval_epochs,
  236. log_interval_steps=log_interval_steps,
  237. save_dir=save_dir,
  238. early_stop=early_stop,
  239. early_stop_patience=early_stop_patience,
  240. use_vdl=use_vdl)
  241. def quant_aware_train(self,
  242. num_epochs,
  243. train_dataset,
  244. train_batch_size=2,
  245. eval_dataset=None,
  246. optimizer=None,
  247. save_interval_epochs=1,
  248. log_interval_steps=2,
  249. save_dir='output',
  250. learning_rate=0.0001,
  251. lr_decay_power=0.9,
  252. early_stop=False,
  253. early_stop_patience=5,
  254. use_vdl=True,
  255. quant_config=None):
  256. """
  257. Quantization-aware training.
  258. Args:
  259. num_epochs(int): The number of epochs.
  260. train_dataset(paddlex.dataset): Training dataset.
  261. train_batch_size(int, optional): Total batch size among all cards used in training. Defaults to 2.
  262. eval_dataset(paddlex.dataset, optional):
  263. Evaluation dataset. If None, the model will not be evaluated furing training process. Defaults to None.
  264. optimizer(paddle.optimizer.Optimizer or None, optional):
  265. Optimizer used in training. If None, a default optimizer is used. Defaults to None.
  266. save_interval_epochs(int, optional): Epoch interval for saving the model. Defaults to 1.
  267. log_interval_steps(int, optional): Step interval for printing training information. Defaults to 10.
  268. save_dir(str, optional): Directory to save the model. Defaults to 'output'.
  269. learning_rate(float, optional): Learning rate for training. Defaults to .025.
  270. lr_decay_power(float, optional): Learning decay power. Defaults to .9.
  271. early_stop(bool, optional): Whether to adopt early stop strategy. Defaults to False.
  272. early_stop_patience(int, optional): Early stop patience. Defaults to 5.
  273. use_vdl(bool, optional): Whether to use VisualDL to monitor the training process. Defaults to True.
  274. quant_config(dict or None, optional): Quantization configuration. If None, a default rule of thumb
  275. configuration will be used. Defaults to None.
  276. """
  277. self._prepare_qat(quant_config)
  278. self.train(
  279. num_epochs=num_epochs,
  280. train_dataset=train_dataset,
  281. train_batch_size=train_batch_size,
  282. eval_dataset=eval_dataset,
  283. optimizer=optimizer,
  284. save_interval_epochs=save_interval_epochs,
  285. log_interval_steps=log_interval_steps,
  286. save_dir=save_dir,
  287. pretrain_weights=None,
  288. learning_rate=learning_rate,
  289. lr_decay_power=lr_decay_power,
  290. early_stop=early_stop,
  291. early_stop_patience=early_stop_patience,
  292. use_vdl=use_vdl)
  293. def evaluate(self, eval_dataset, batch_size=1, return_details=False):
  294. """
  295. Evaluate the model.
  296. Args:
  297. eval_dataset(paddlex.dataset): Evaluation dataset.
  298. batch_size(int, optional): Total batch size among all cards used for evaluation. Defaults to 1.
  299. return_details(bool, optional): Whether to return evaluation details. Defaults to False.
  300. Returns:
  301. collections.OrderedDict with key-value pairs:
  302. {"miou": `mean intersection over union`,
  303. "category_iou": `category-wise mean intersection over union`,
  304. "oacc": `overall accuracy`,
  305. "category_acc": `category-wise accuracy`,
  306. "kappa": ` kappa coefficient`,
  307. "category_F1-score": `F1 score`}.
  308. """
  309. arrange_transforms(
  310. model_type=self.model_type,
  311. transforms=eval_dataset.transforms,
  312. mode='eval')
  313. self.net.eval()
  314. nranks = paddle.distributed.get_world_size()
  315. local_rank = paddle.distributed.get_rank()
  316. if nranks > 1:
  317. # Initialize parallel environment if not done.
  318. if not paddle.distributed.parallel.parallel_helper._is_parallel_ctx_initialized(
  319. ):
  320. paddle.distributed.init_parallel_env()
  321. batch_size_each_card = get_single_card_bs(batch_size)
  322. if batch_size_each_card > 1:
  323. batch_size_each_card = 1
  324. batch_size = batch_size_each_card * paddlex.env_info['num']
  325. logging.warning(
  326. "Segmenter only supports batch_size=1 for each gpu/cpu card " \
  327. "during evaluation, so batch_size " \
  328. "is forcibly set to {}.".format(batch_size))
  329. self.eval_data_loader = self.build_data_loader(
  330. eval_dataset, batch_size=batch_size, mode='eval')
  331. intersect_area_all = 0
  332. pred_area_all = 0
  333. label_area_all = 0
  334. logging.info(
  335. "Start to evaluate(total_samples={}, total_steps={})...".format(
  336. eval_dataset.num_samples,
  337. math.ceil(eval_dataset.num_samples * 1.0 / batch_size)))
  338. with paddle.no_grad():
  339. for step, data in enumerate(self.eval_data_loader):
  340. data.append(eval_dataset.transforms.transforms)
  341. outputs = self.run(self.net, data, 'eval')
  342. pred_area = outputs['pred_area']
  343. label_area = outputs['label_area']
  344. intersect_area = outputs['intersect_area']
  345. # Gather from all ranks
  346. if nranks > 1:
  347. intersect_area_list = []
  348. pred_area_list = []
  349. label_area_list = []
  350. paddle.distributed.all_gather(intersect_area_list,
  351. intersect_area)
  352. paddle.distributed.all_gather(pred_area_list, pred_area)
  353. paddle.distributed.all_gather(label_area_list, label_area)
  354. # Some image has been evaluated and should be eliminated in last iter
  355. if (step + 1) * nranks > len(eval_dataset):
  356. valid = len(eval_dataset) - step * nranks
  357. intersect_area_list = intersect_area_list[:valid]
  358. pred_area_list = pred_area_list[:valid]
  359. label_area_list = label_area_list[:valid]
  360. for i in range(len(intersect_area_list)):
  361. intersect_area_all = intersect_area_all + intersect_area_list[
  362. i]
  363. pred_area_all = pred_area_all + pred_area_list[i]
  364. label_area_all = label_area_all + label_area_list[i]
  365. else:
  366. intersect_area_all = intersect_area_all + intersect_area
  367. pred_area_all = pred_area_all + pred_area
  368. label_area_all = label_area_all + label_area
  369. class_iou, miou = metrics.mean_iou(intersect_area_all, pred_area_all,
  370. label_area_all)
  371. # TODO 确认是按oacc还是macc
  372. class_acc, oacc = metrics.accuracy(intersect_area_all, pred_area_all)
  373. kappa = metrics.kappa(intersect_area_all, pred_area_all,
  374. label_area_all)
  375. category_f1score = metrics.f1_score(intersect_area_all, pred_area_all,
  376. label_area_all)
  377. eval_metrics = OrderedDict(
  378. zip([
  379. 'miou', 'category_iou', 'oacc', 'category_acc', 'kappa',
  380. 'category_F1-score'
  381. ], [miou, class_iou, oacc, class_acc, kappa, category_f1score]))
  382. return eval_metrics
  383. def predict(self, img_file, transforms=None):
  384. """
  385. Do inference.
  386. Args:
  387. Args:
  388. img_file(List[np.ndarray or str], str or np.ndarray): img_file(list or str or np.array):
  389. Image path or decoded image data in a BGR format, which also could constitute a list,
  390. meaning all images to be predicted as a mini-batch.
  391. transforms(paddlex.transforms.Compose or None, optional):
  392. Transforms for inputs. If None, the transforms for evaluation process will be used. Defaults to None.
  393. Returns:
  394. If img_file is a string or np.array, the result is a dict with key-value pairs:
  395. {"label map": `label map`, "score_map": `score map`}.
  396. If img_file is a list, the result is a list composed of dicts with the corresponding fields:
  397. label_map(np.ndarray): the predicted label map
  398. score_map(np.ndarray): the prediction score map
  399. """
  400. if transforms is None and not hasattr(self, 'test_transforms'):
  401. raise Exception("transforms need to be defined, now is None.")
  402. if transforms is None:
  403. transforms = self.test_transforms
  404. if isinstance(img_file, (str, np.ndarray)):
  405. images = [img_file]
  406. else:
  407. images = img_file
  408. batch_im, batch_origin_shape = self._preprocess(images, transforms,
  409. self.model_type)
  410. self.net.eval()
  411. data = (batch_im, batch_origin_shape, transforms.transforms)
  412. outputs = self.run(self.net, data, 'test')
  413. label_map = outputs['label_map']
  414. label_map = label_map.numpy().astype('uint8')
  415. score_map = outputs['score_map']
  416. score_map = score_map.numpy().astype('float32')
  417. return {'label_map': label_map, 'score_map': score_map}
  418. def _preprocess(self, images, transforms, model_type):
  419. arrange_transforms(
  420. model_type=model_type, transforms=transforms, mode='test')
  421. batch_im = list()
  422. batch_ori_shape = list()
  423. for im in images:
  424. sample = {'image': im}
  425. if isinstance(sample['image'], str):
  426. sample = Decode(to_rgb=False)(sample)
  427. ori_shape = sample['image'].shape[:2]
  428. im = transforms(sample)[0]
  429. batch_im.append(im)
  430. batch_ori_shape.append(ori_shape)
  431. batch_im = paddle.to_tensor(batch_im)
  432. return batch_im, batch_ori_shape
  433. @staticmethod
  434. def get_transforms_shape_info(batch_ori_shape, transforms):
  435. batch_restore_list = list()
  436. for ori_shape in batch_ori_shape:
  437. restore_list = list()
  438. h, w = ori_shape[0], ori_shape[1]
  439. for op in transforms:
  440. if op.__class__.__name__ in ['Resize', 'ResizeByShort']:
  441. restore_list.append(('resize', (h, w)))
  442. h, w = op.target_size
  443. if op.__class__.__name__ in ['Padding']:
  444. restore_list.append(('padding', (h, w)))
  445. h, w = op.target_size
  446. batch_restore_list.append(restore_list)
  447. return batch_restore_list
  448. def _postprocess(self, batch_pred, batch_origin_shape, transforms):
  449. batch_restore_list = BaseSegmenter.get_transforms_shape_info(
  450. batch_origin_shape, transforms)
  451. results = list()
  452. for pred, restore_list in zip(batch_pred, batch_restore_list):
  453. pred = paddle.unsqueeze(pred, axis=0)
  454. for item in restore_list[::-1]:
  455. # TODO: 替换成cv2的interpolate(部署阶段无法使用paddle op)
  456. h, w = item[1][0], item[1][1]
  457. if item[0] == 'resize':
  458. pred = F.interpolate(pred, (h, w), mode='nearest')
  459. elif item[0] == 'padding':
  460. pred = pred[:, :, 0:h, 0:w]
  461. else:
  462. pass
  463. results.append(pred)
  464. batch_pred = paddle.concat(results, axis=0)
  465. return batch_pred
  466. class UNet(BaseSegmenter):
  467. def __init__(self,
  468. num_classes=2,
  469. use_mixed_loss=False,
  470. use_deconv=False,
  471. align_corners=False):
  472. params = {'use_deconv': use_deconv, 'align_corners': align_corners}
  473. super(UNet, self).__init__(
  474. model_name='UNet',
  475. num_classes=num_classes,
  476. use_mixed_loss=use_mixed_loss,
  477. **params)
  478. class DeepLabV3P(BaseSegmenter):
  479. def __init__(self,
  480. num_classes=2,
  481. backbone='ResNet50_vd',
  482. use_mixed_loss=False,
  483. output_stride=8,
  484. backbone_indices=(0, 3),
  485. aspp_ratios=(1, 12, 24, 36),
  486. aspp_out_channels=256,
  487. align_corners=False):
  488. self.backbone_name = backbone
  489. if backbone not in ['ResNet50_vd', 'ResNet101_vd']:
  490. raise ValueError(
  491. "backbone: {} is not supported. Please choose one of "
  492. "('ResNet50_vd', 'ResNet101_vd')".format(backbone))
  493. with DisablePrint():
  494. backbone = getattr(paddleseg.models, backbone)(
  495. output_stride=output_stride)
  496. params = {
  497. 'backbone': backbone,
  498. 'backbone_indices': backbone_indices,
  499. 'aspp_ratios': aspp_ratios,
  500. 'aspp_out_channels': aspp_out_channels,
  501. 'align_corners': align_corners
  502. }
  503. super(DeepLabV3P, self).__init__(
  504. model_name='DeepLabV3P',
  505. num_classes=num_classes,
  506. use_mixed_loss=use_mixed_loss,
  507. **params)
  508. class FastSCNN(BaseSegmenter):
  509. def __init__(self,
  510. num_classes=2,
  511. use_mixed_loss=False,
  512. align_corners=False):
  513. params = {'align_corners': align_corners}
  514. super(FastSCNN, self).__init__(
  515. model_name='FastSCNN',
  516. num_classes=num_classes,
  517. use_mixed_loss=use_mixed_loss,
  518. **params)
  519. class HRNet(BaseSegmenter):
  520. def __init__(self,
  521. num_classes=2,
  522. width=48,
  523. use_mixed_loss=False,
  524. align_corners=False):
  525. if width not in (18, 48):
  526. raise ValueError(
  527. "width={} is not supported, please choose from [18, 48]".
  528. format(width))
  529. self.backbone_name = 'HRNet_W{}'.format(width)
  530. with DisablePrint():
  531. backbone = getattr(paddleseg.models, self.backbone_name)(
  532. align_corners=align_corners)
  533. params = {'backbone': backbone, 'align_corners': align_corners}
  534. super(HRNet, self).__init__(
  535. model_name='FCN',
  536. num_classes=num_classes,
  537. use_mixed_loss=use_mixed_loss,
  538. **params)
  539. self.model_name = 'HRNet'
  540. class BiSeNetV2(BaseSegmenter):
  541. def __init__(self,
  542. num_classes=2,
  543. use_mixed_loss=False,
  544. align_corners=False):
  545. params = {'align_corners': align_corners}
  546. super(BiSeNetV2, self).__init__(
  547. model_name='BiSeNetV2',
  548. num_classes=num_classes,
  549. use_mixed_loss=use_mixed_loss,
  550. **params)