| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- from six import text_type as _text_type
- import argparse
- import sys
- import paddlex as pdx
- def arg_parser():
- parser = argparse.ArgumentParser()
- parser.add_argument(
- "--model_dir",
- "-m",
- type=_text_type,
- default=None,
- help="define model directory path")
- parser.add_argument(
- "--save_dir",
- "-s",
- type=_text_type,
- default=None,
- help="path to save inference model")
- parser.add_argument(
- "--fixed_input_shape",
- "-fs",
- default=None,
- help="export openvino model with input shape:[w,h]")
- parser.add_argument(
- "--data_type",
- "-dp",
- default="FP32",
- help="option, FP32 or FP16, the data_type of openvino IR")
- return parser
- def reverse_input(shape):
- shape_list = shape[1:-1].split(',')
- shape = '[1,3,' + shape_list[1] + ',' + shape_list[0] + ']'
- return shape
- def export_openvino_model(model, args):
- if model.model_type == "detector" or model.__class__.__name__ == "FastSCNN":
- print(
- "Only image classifier models and semantic segmentation models(except FastSCNN) are supported to export to openvino"
- )
- try:
- import x2paddle
- if x2paddle.__version__ < '0.7.4':
- logging.error("You need to upgrade x2paddle >= 0.7.4")
- except:
- print(
- "You need to install x2paddle first, pip install x2paddle>=0.7.4")
- import x2paddle.convert as x2pc
- x2pc.paddle2onnx(args.model_dir, args.save_dir)
- import mo.main as mo
- from mo.utils.cli_parser import get_onnx_cli_parser
- onnx_parser = get_onnx_cli_parser()
- onnx_parser.add_argument("--model_dir", type=_text_type)
- onnx_parser.add_argument("--save_dir", type=_text_type)
- onnx_parser.add_argument("--fixed_input_shape")
- onnx_input = os.path.join(args.save_dir, 'x2paddle_model.onnx')
- onnx_parser.set_defaults(input_model=onnx_input)
- onnx_parser.set_defaults(output_dir=args.save_dir)
- shape_list = args.fixed_input_shape[1:-1].split(',')
- shape = '[1,3,' + shape_list[1] + ',' + shape_list[0] + ']'
- if model.__class__.__name__ == "YOLOV3":
- shape = shape + ",[1,2]"
- inputs = "image,im_size"
- onnx_parser.set_defaults(input=inputs)
- onnx_parser.set_defaults(input_shape=shape)
- mo.main(onnx_parser, 'onnx')
- def main():
- parser = arg_parser()
- args = parser.parse_args()
- assert args.model_dir is not None, "--model_dir should be defined while exporting openvino model"
- assert args.save_dir is not None, "--save_dir should be defined to create openvino model"
- model = pdx.load_model(args.model_dir)
- if model.status == "Normal" or model.status == "Prune":
- print(
- "Only support inference model, try to export model first as below,",
- exit=False)
- export_openvino_model(model, args)
- if __name__ == "__main__":
- main()
|