convertor.py 3.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104
  1. # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. import os
  15. from six import text_type as _text_type
  16. import argparse
  17. import sys
  18. import paddlex as pdx
  19. def arg_parser():
  20. parser = argparse.ArgumentParser()
  21. parser.add_argument(
  22. "--model_dir",
  23. "-m",
  24. type=_text_type,
  25. default=None,
  26. help="define model directory path")
  27. parser.add_argument(
  28. "--save_dir",
  29. "-s",
  30. type=_text_type,
  31. default=None,
  32. help="path to save inference model")
  33. parser.add_argument(
  34. "--fixed_input_shape",
  35. "-fs",
  36. default=None,
  37. help="export openvino model with input shape:[w,h]")
  38. parser.add_argument(
  39. "--data_type",
  40. "-dp",
  41. default="FP32",
  42. help="option, FP32 or FP16, the data_type of openvino IR")
  43. return parser
  44. def reverse_input(shape):
  45. shape_list = shape[1:-1].split(',')
  46. shape = '[1,3,' + shape_list[1] + ',' + shape_list[0] + ']'
  47. return shape
  48. def export_openvino_model(model, args):
  49. if model.model_type == "detector" or model.__class__.__name__ == "FastSCNN":
  50. print(
  51. "Only image classifier models and semantic segmentation models(except FastSCNN) are supported to export to openvino"
  52. )
  53. try:
  54. import x2paddle
  55. if x2paddle.__version__ < '0.7.4':
  56. logging.error("You need to upgrade x2paddle >= 0.7.4")
  57. except:
  58. print(
  59. "You need to install x2paddle first, pip install x2paddle>=0.7.4")
  60. import x2paddle.convert as x2pc
  61. x2pc.paddle2onnx(args.model_dir, args.save_dir)
  62. import mo.main as mo
  63. from mo.utils.cli_parser import get_onnx_cli_parser
  64. onnx_parser = get_onnx_cli_parser()
  65. onnx_parser.add_argument("--model_dir", type=_text_type)
  66. onnx_parser.add_argument("--save_dir", type=_text_type)
  67. onnx_parser.add_argument("--fixed_input_shape")
  68. onnx_input = os.path.join(args.save_dir, 'x2paddle_model.onnx')
  69. onnx_parser.set_defaults(input_model=onnx_input)
  70. onnx_parser.set_defaults(output_dir=args.save_dir)
  71. shape_list = args.fixed_input_shape[1:-1].split(',')
  72. shape = '[1,3,' + shape_list[1] + ',' + shape_list[0] + ']'
  73. if model.__class__.__name__ == "YOLOV3":
  74. shape = shape + ",[1,2]"
  75. inputs = "image,im_size"
  76. onnx_parser.set_defaults(input=inputs)
  77. onnx_parser.set_defaults(input_shape=shape)
  78. mo.main(onnx_parser, 'onnx')
  79. def main():
  80. parser = arg_parser()
  81. args = parser.parse_args()
  82. assert args.model_dir is not None, "--model_dir should be defined while exporting openvino model"
  83. assert args.save_dir is not None, "--save_dir should be defined to create openvino model"
  84. model = pdx.load_model(args.model_dir)
  85. if model.status == "Normal" or model.status == "Prune":
  86. print(
  87. "Only support inference model, try to export model first as below,",
  88. exit=False)
  89. export_openvino_model(model, args)
  90. if __name__ == "__main__":
  91. main()