classifier.py 32 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787
  1. # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from __future__ import absolute_import
  15. import math
  16. import os.path as osp
  17. from collections import OrderedDict
  18. import numpy as np
  19. import paddle
  20. from paddle import to_tensor
  21. import paddle.nn.functional as F
  22. from paddle.static import InputSpec
  23. from paddlex.utils import logging, TrainingStats, DisablePrint
  24. from paddlex.cv.models.base import BaseModel
  25. from paddlex.cv.transforms import arrange_transforms
  26. from paddlex.cv.transforms.operators import Resize
  27. with DisablePrint():
  28. from PaddleClas.ppcls.modeling import architectures
  29. from PaddleClas.ppcls.modeling.loss import CELoss
  30. __all__ = [
  31. "ResNet18", "ResNet34", "ResNet50", "ResNet101", "ResNet152",
  32. "ResNet18_vd", "ResNet34_vd", "ResNet50_vd", "ResNet50_vd_ssld",
  33. "ResNet101_vd", "ResNet101_vd_ssld", "ResNet152_vd", "ResNet200_vd",
  34. "AlexNet", "DarkNet53", "MobileNetV1", "MobileNetV2", "MobileNetV3_small",
  35. "MobileNetV3_small_ssld", "MobileNetV3_large", "MobileNetV3_large_ssld",
  36. "DenseNet121", "DenseNet161", "DenseNet169", "DenseNet201", "DenseNet264",
  37. "HRNet_W18_C", "HRNet_W30_C", "HRNet_W32_C", "HRNet_W40_C", "HRNet_W44_C",
  38. "HRNet_W48_C", "HRNet_W64_C", "Xception41", "Xception65", "Xception71",
  39. "ShuffleNetV2", "ShuffleNetV2_swish"
  40. ]
  41. class BaseClassifier(BaseModel):
  42. """Parent class of all classification models.
  43. Args:
  44. model_name (str, optional): Name of classification model. Defaults to 'ResNet50'.
  45. num_classes (int, optional): The number of target classes. Defaults to 1000.
  46. """
  47. def __init__(self, model_name='ResNet50', num_classes=1000, **params):
  48. self.init_params = locals()
  49. self.init_params.update(params)
  50. if 'lr_mult_list' in self.init_params:
  51. del self.init_params['lr_mult_list']
  52. super(BaseClassifier, self).__init__('classifier')
  53. if not hasattr(architectures, model_name):
  54. raise Exception("ERROR: There's no model named {}.".format(
  55. model_name))
  56. self.model_name = model_name
  57. self.labels = None
  58. self.num_classes = num_classes
  59. for k, v in params.items():
  60. setattr(self, k, v)
  61. self.net = self.build_net(**params)
  62. def build_net(self, **params):
  63. with paddle.utils.unique_name.guard():
  64. net = architectures.__dict__[self.model_name](
  65. class_dim=self.num_classes, **params)
  66. return net
  67. def _fix_transforms_shape(self, image_shape):
  68. if hasattr(self, 'test_transforms'):
  69. if self.test_transforms is not None:
  70. self.test_transforms.transforms.append(
  71. Resize(target_size=image_shape))
  72. def _get_test_inputs(self, image_shape):
  73. if image_shape is not None:
  74. if len(image_shape) == 2:
  75. image_shape = [None, 3] + image_shape
  76. self._fix_transforms_shape(image_shape[-2:])
  77. else:
  78. image_shape = [None, 3, -1, -1]
  79. input_spec = [
  80. InputSpec(
  81. shape=image_shape, name='image', dtype='float32')
  82. ]
  83. return input_spec
  84. def run(self, net, inputs, mode):
  85. net_out = net(inputs[0])
  86. softmax_out = F.softmax(net_out)
  87. if mode == 'test':
  88. outputs = OrderedDict([('prediction', softmax_out)])
  89. elif mode == 'eval':
  90. labels = to_tensor(inputs[1].numpy().astype('int64').reshape(-1,
  91. 1))
  92. acc1 = paddle.metric.accuracy(softmax_out, label=labels)
  93. k = min(5, self.num_classes)
  94. acck = paddle.metric.accuracy(softmax_out, label=labels, k=k)
  95. prediction = softmax_out
  96. # multi cards eval
  97. if paddle.distributed.get_world_size() > 1:
  98. acc1 = paddle.distributed.all_reduce(
  99. acc1, op=paddle.distributed.ReduceOp.
  100. SUM) / paddle.distributed.get_world_size()
  101. acck = paddle.distributed.all_reduce(
  102. acck, op=paddle.distributed.ReduceOp.
  103. SUM) / paddle.distributed.get_world_size()
  104. prediction = []
  105. paddle.distributed.all_gather(prediction, softmax_out)
  106. prediction = paddle.concat(prediction, axis=0)
  107. outputs = OrderedDict([('acc1', acc1), ('acc{}'.format(k), acck),
  108. ('prediction', prediction)])
  109. else:
  110. # mode == 'train'
  111. labels = to_tensor(inputs[1].numpy().astype('int64').reshape(-1,
  112. 1))
  113. loss = CELoss(class_dim=self.num_classes)
  114. loss = loss(net_out, inputs[1])
  115. acc1 = paddle.metric.accuracy(softmax_out, label=labels, k=1)
  116. k = min(5, self.num_classes)
  117. acck = paddle.metric.accuracy(softmax_out, label=labels, k=k)
  118. outputs = OrderedDict([('loss', loss), ('acc1', acc1),
  119. ('acc{}'.format(k), acck)])
  120. return outputs
  121. def default_optimizer(self, parameters, learning_rate, warmup_steps,
  122. warmup_start_lr, lr_decay_epochs, lr_decay_gamma,
  123. num_steps_each_epoch):
  124. boundaries = [b * num_steps_each_epoch for b in lr_decay_epochs]
  125. values = [
  126. learning_rate * (lr_decay_gamma**i)
  127. for i in range(len(lr_decay_epochs) + 1)
  128. ]
  129. scheduler = paddle.optimizer.lr.PiecewiseDecay(boundaries, values)
  130. if warmup_steps > 0:
  131. if warmup_steps > lr_decay_epochs[0] * num_steps_each_epoch:
  132. logging.error(
  133. "In function train(), parameters should satisfy: "
  134. "warmup_steps <= lr_decay_epochs[0]*num_samples_in_train_dataset",
  135. exit=False)
  136. logging.error(
  137. "See this doc for more information: "
  138. "https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/appendix/parameters.md#notice",
  139. exit=False)
  140. logging.error(
  141. "warmup_steps should less than {} or lr_decay_epochs[0] greater than {}, "
  142. "please modify 'lr_decay_epochs' or 'warmup_steps' in train function".
  143. format(lr_decay_epochs[0] * num_steps_each_epoch,
  144. warmup_steps // num_steps_each_epoch))
  145. scheduler = paddle.optimizer.lr.LinearWarmup(
  146. learning_rate=scheduler,
  147. warmup_steps=warmup_steps,
  148. start_lr=warmup_start_lr,
  149. end_lr=learning_rate)
  150. optimizer = paddle.optimizer.Momentum(
  151. scheduler,
  152. momentum=.9,
  153. weight_decay=paddle.regularizer.L2Decay(coeff=1e-04),
  154. parameters=parameters)
  155. return optimizer
  156. def train(self,
  157. num_epochs,
  158. train_dataset,
  159. train_batch_size=64,
  160. eval_dataset=None,
  161. optimizer=None,
  162. save_interval_epochs=1,
  163. log_interval_steps=10,
  164. save_dir='output',
  165. pretrain_weights='IMAGENET',
  166. learning_rate=.025,
  167. warmup_steps=0,
  168. warmup_start_lr=0.0,
  169. lr_decay_epochs=(30, 60, 90),
  170. lr_decay_gamma=0.1,
  171. early_stop=False,
  172. early_stop_patience=5,
  173. use_vdl=True):
  174. """
  175. Train the model.
  176. Args:
  177. num_epochs(int): The number of epochs.
  178. train_dataset(paddlex.dataset): Training dataset.
  179. train_batch_size(int, optional): Total batch size among all cards used in training. Defaults to 64.
  180. eval_dataset(paddlex.dataset, optional):
  181. Evaluation dataset. If None, the model will not be evaluated during training process. Defaults to None.
  182. optimizer(paddle.optimizer.Optimizer or None, optional):
  183. Optimizer used for training. If None, a default optimizer is used. Defaults to None.
  184. save_interval_epochs(int, optional): Epoch interval for saving the model. Defaults to 1.
  185. log_interval_steps(int, optional): Step interval for printing training information. Defaults to 10.
  186. save_dir(str, optional): Directory to save the model. Defaults to 'output'.
  187. pretrain_weights(str or None, optional):
  188. None or name/path of pretrained weights. If None, no pretrained weights will be loaded. Defaults to 'IMAGENET'.
  189. learning_rate(float, optional): Learning rate for training. Defaults to .025.
  190. warmup_steps(int, optional): The number of steps of warm-up training. Defaults to 0.
  191. warmup_start_lr(float, optional): Start learning rate of warm-up training. Defaults to 0..
  192. lr_decay_epochs(List[int] or Tuple[int], optional):
  193. Epoch milestones for learning rate decay. Defaults to (20, 60, 90).
  194. lr_decay_gamma(float, optional): Gamma coefficient of learning rate decay, default .1.
  195. early_stop(bool, optional): Whether to adopt early stop strategy. Defaults to False.
  196. early_stop_patience(int, optional): Early stop patience. Defaults to 5.
  197. use_vdl(bool, optional): Whether to use VisualDL to monitor the training process. Defaults to True.
  198. """
  199. self.labels = train_dataset.labels
  200. # build optimizer if not defined
  201. if optimizer is None:
  202. num_steps_each_epoch = len(train_dataset) // train_batch_size
  203. self.optimizer = self.default_optimizer(
  204. parameters=self.net.parameters(),
  205. learning_rate=learning_rate,
  206. warmup_steps=warmup_steps,
  207. warmup_start_lr=warmup_start_lr,
  208. lr_decay_epochs=lr_decay_epochs,
  209. lr_decay_gamma=lr_decay_gamma,
  210. num_steps_each_epoch=num_steps_each_epoch)
  211. else:
  212. self.optimizer = optimizer
  213. # initiate weights
  214. if pretrain_weights is not None and not osp.exists(pretrain_weights):
  215. if pretrain_weights not in ['IMAGENET']:
  216. logging.warning(
  217. "Path of pretrain_weights('{}') does not exist!".format(
  218. pretrain_weights))
  219. logging.warning(
  220. "Pretrain_weights is forcibly set to 'IMAGENET'. "
  221. "If don't want to use pretrain weights, "
  222. "set pretrain_weights to be None.")
  223. pretrain_weights = 'IMAGENET'
  224. elif pretrain_weights is not None and osp.exists(pretrain_weights):
  225. if osp.splitext(pretrain_weights)[-1] != '.pdparams':
  226. logging.error(
  227. "Invalid pretrain weights. Please specify a '.pdparams' file.",
  228. exit=True)
  229. pretrained_dir = osp.join(save_dir, 'pretrain')
  230. self.net_initialize(
  231. pretrain_weights=pretrain_weights, save_dir=pretrained_dir)
  232. # start train loop
  233. self.train_loop(
  234. num_epochs=num_epochs,
  235. train_dataset=train_dataset,
  236. train_batch_size=train_batch_size,
  237. eval_dataset=eval_dataset,
  238. save_interval_epochs=save_interval_epochs,
  239. log_interval_steps=log_interval_steps,
  240. save_dir=save_dir,
  241. early_stop=early_stop,
  242. early_stop_patience=early_stop_patience,
  243. use_vdl=use_vdl)
  244. def quant_aware_train(self,
  245. num_epochs,
  246. train_dataset,
  247. train_batch_size=64,
  248. eval_dataset=None,
  249. optimizer=None,
  250. save_interval_epochs=1,
  251. log_interval_steps=10,
  252. save_dir='output',
  253. learning_rate=.000025,
  254. warmup_steps=0,
  255. warmup_start_lr=0.0,
  256. lr_decay_epochs=(30, 60, 90),
  257. lr_decay_gamma=0.1,
  258. early_stop=False,
  259. early_stop_patience=5,
  260. use_vdl=True,
  261. quant_config=None):
  262. """
  263. Quantization-aware training.
  264. Args:
  265. num_epochs(int): The number of epochs.
  266. train_dataset(paddlex.dataset): Training dataset.
  267. train_batch_size(int, optional): Total batch size among all cards used in training. Defaults to 64.
  268. eval_dataset(paddlex.dataset, optional):
  269. Evaluation dataset. If None, the model will not be evaluated during training process. Defaults to None.
  270. optimizer(paddle.optimizer.Optimizer or None, optional):
  271. Optimizer used for training. If None, a default optimizer is used. Defaults to None.
  272. save_interval_epochs(int, optional): Epoch interval for saving the model. Defaults to 1.
  273. log_interval_steps(int, optional): Step interval for printing training information. Defaults to 10.
  274. save_dir(str, optional): Directory to save the model. Defaults to 'output'.
  275. learning_rate(float, optional): Learning rate for training. Defaults to .025.
  276. warmup_steps(int, optional): The number of steps of warm-up training. Defaults to 0.
  277. warmup_start_lr(float, optional): Start learning rate of warm-up training. Defaults to 0..
  278. lr_decay_epochs(List[int] or Tuple[int], optional):
  279. Epoch milestones for learning rate decay. Defaults to (20, 60, 90).
  280. lr_decay_gamma(float, optional): Gamma coefficient of learning rate decay, default .1.
  281. early_stop(bool, optional): Whether to adopt early stop strategy. Defaults to False.
  282. early_stop_patience(int, optional): Early stop patience. Defaults to 5.
  283. use_vdl(bool, optional): Whether to use VisualDL to monitor the training process. Defaults to True.
  284. quant_config(dict or None, optional): Quantization configuration. If None, a default rule of thumb
  285. configuration will be used. Defaults to None.
  286. """
  287. self._prepare_qat(quant_config)
  288. self.train(
  289. num_epochs=num_epochs,
  290. train_dataset=train_dataset,
  291. train_batch_size=train_batch_size,
  292. eval_dataset=eval_dataset,
  293. optimizer=optimizer,
  294. save_interval_epochs=save_interval_epochs,
  295. log_interval_steps=log_interval_steps,
  296. save_dir=save_dir,
  297. pretrain_weights=None,
  298. learning_rate=learning_rate,
  299. warmup_steps=warmup_steps,
  300. warmup_start_lr=warmup_start_lr,
  301. lr_decay_epochs=lr_decay_epochs,
  302. lr_decay_gamma=lr_decay_gamma,
  303. early_stop=early_stop,
  304. early_stop_patience=early_stop_patience,
  305. use_vdl=use_vdl)
  306. def evaluate(self, eval_dataset, batch_size=1, return_details=False):
  307. """
  308. Evaluate the model.
  309. Args:
  310. eval_dataset(paddlex.dataset): Evaluation dataset.
  311. batch_size(int, optional): Total batch size among all cards used for evaluation. Defaults to 1.
  312. return_details(bool, optional): Whether to return evaluation details. Defaults to False.
  313. Returns:
  314. collections.OrderedDict with key-value pairs: {"acc1": `top 1 accuracy`, "acc5": `top 5 accuracy`}.
  315. """
  316. # 给transform添加arrange操作
  317. arrange_transforms(
  318. model_type=self.model_type,
  319. transforms=eval_dataset.transforms,
  320. mode='eval')
  321. self.net.eval()
  322. nranks = paddle.distributed.get_world_size()
  323. local_rank = paddle.distributed.get_rank()
  324. if nranks > 1:
  325. # Initialize parallel environment if not done.
  326. if not paddle.distributed.parallel.parallel_helper._is_parallel_ctx_initialized(
  327. ):
  328. paddle.distributed.init_parallel_env()
  329. self.eval_data_loader = self.build_data_loader(
  330. eval_dataset, batch_size=batch_size, mode='eval')
  331. eval_metrics = TrainingStats()
  332. eval_details = None
  333. if return_details:
  334. eval_details = list()
  335. logging.info(
  336. "Start to evaluate(total_samples={}, total_steps={})...".format(
  337. eval_dataset.num_samples,
  338. math.ceil(eval_dataset.num_samples * 1.0 / batch_size)))
  339. with paddle.no_grad():
  340. for step, data in enumerate(self.eval_data_loader()):
  341. outputs = self.run(self.net, data, mode='eval')
  342. if return_details:
  343. eval_details.append(outputs['prediction'].tolist())
  344. outputs.pop('prediction')
  345. eval_metrics.update(outputs)
  346. if return_details:
  347. return eval_metrics.get(), eval_details
  348. else:
  349. return eval_metrics.get()
  350. def predict(self, img_file, transforms=None, topk=1):
  351. """
  352. Do inference.
  353. Args:
  354. img_file(List[np.ndarray or str], str or np.ndarray): img_file(list or str or np.array):
  355. Image path or decoded image data in a BGR format, which also could constitute a list,
  356. meaning all images to be predicted as a mini-batch.
  357. transforms(paddlex.transforms.Compose or None, optional):
  358. Transforms for inputs. If None, the transforms for evaluation process will be used. Defaults to None.
  359. topk(int, optional): Keep topk results in prediction. Defaults to 1.
  360. Returns:
  361. If img_file is a string or np.array, the result is a dict with key-value pairs:
  362. {"category_id": `category_id`, "category": `category`, "score": `score`}.
  363. If img_file is a list, the result is a list composed of dicts with the corresponding fields:
  364. category_id(int): the predicted category ID
  365. category(str): category name
  366. score(float): confidence
  367. """
  368. if transforms is None and not hasattr(self, 'test_transforms'):
  369. raise Exception("transforms need to be defined, now is None.")
  370. if transforms is None:
  371. transforms = self.test_transforms
  372. true_topk = min(self.num_classes, topk)
  373. if isinstance(img_file, (str, np.ndarray)):
  374. images = [img_file]
  375. else:
  376. images = img_file
  377. im = self._preprocess(images, transforms, self.model_type)
  378. self.net.eval()
  379. with paddle.no_grad():
  380. outputs = self.run(self.net, im, mode='test')
  381. prediction = outputs['prediction'].numpy()
  382. prediction = self._postprocess(prediction, true_topk, self.labels)
  383. if isinstance(img_file, (str, np.ndarray)):
  384. prediction = prediction[0]
  385. return prediction
  386. def _preprocess(self, images, transforms, model_type):
  387. arrange_transforms(
  388. model_type=model_type, transforms=transforms, mode='test')
  389. batch_im = list()
  390. for im in images:
  391. sample = {'image': im}
  392. batch_im.append(transforms(sample))
  393. batch_im = to_tensor(batch_im)
  394. return batch_im,
  395. def _postprocess(self, results, true_topk, labels):
  396. preds = list()
  397. for i, pred in enumerate(results):
  398. pred_label = np.argsort(pred)[::-1][:true_topk]
  399. preds.append([{
  400. 'category_id': l,
  401. 'category': labels[l],
  402. 'score': results[i][l]
  403. } for l in pred_label])
  404. return preds
  405. class ResNet18(BaseClassifier):
  406. def __init__(self, num_classes=1000):
  407. super(ResNet18, self).__init__(
  408. model_name='ResNet18', num_classes=num_classes)
  409. class ResNet34(BaseClassifier):
  410. def __init__(self, num_classes=1000):
  411. super(ResNet34, self).__init__(
  412. model_name='ResNet34', num_classes=num_classes)
  413. class ResNet50(BaseClassifier):
  414. def __init__(self, num_classes=1000):
  415. super(ResNet50, self).__init__(
  416. model_name='ResNet50', num_classes=num_classes)
  417. class ResNet101(BaseClassifier):
  418. def __init__(self, num_classes=1000):
  419. super(ResNet101, self).__init__(
  420. model_name='ResNet101', num_classes=num_classes)
  421. class ResNet152(BaseClassifier):
  422. def __init__(self, num_classes=1000):
  423. super(ResNet152, self).__init__(
  424. model_name='ResNet152', num_classes=num_classes)
  425. class ResNet18_vd(BaseClassifier):
  426. def __init__(self, num_classes=1000):
  427. super(ResNet18_vd, self).__init__(
  428. model_name='ResNet18_vd', num_classes=num_classes)
  429. class ResNet34_vd(BaseClassifier):
  430. def __init__(self, num_classes=1000):
  431. super(ResNet34_vd, self).__init__(
  432. model_name='ResNet34_vd', num_classes=num_classes)
  433. class ResNet50_vd(BaseClassifier):
  434. def __init__(self, num_classes=1000):
  435. super(ResNet50_vd, self).__init__(
  436. model_name='ResNet50_vd', num_classes=num_classes)
  437. class ResNet50_vd_ssld(BaseClassifier):
  438. def __init__(self, num_classes=1000):
  439. super(ResNet50_vd_ssld, self).__init__(
  440. model_name='ResNet50_vd',
  441. num_classes=num_classes,
  442. lr_mult_list=[.1, .1, .2, .2, .3])
  443. self.model_name = 'ResNet50_vd_ssld'
  444. class ResNet101_vd(BaseClassifier):
  445. def __init__(self, num_classes=1000):
  446. super(ResNet101_vd, self).__init__(
  447. model_name='ResNet101_vd', num_classes=num_classes)
  448. class ResNet101_vd_ssld(BaseClassifier):
  449. def __init__(self, num_classes=1000):
  450. super(ResNet101_vd_ssld, self).__init__(
  451. model_name='ResNet101_vd',
  452. num_classes=num_classes,
  453. lr_mult_list=[.1, .1, .2, .2, .3])
  454. self.model_name = 'ResNet101_vd_ssld'
  455. class ResNet152_vd(BaseClassifier):
  456. def __init__(self, num_classes=1000):
  457. super(ResNet152_vd, self).__init__(
  458. model_name='ResNet152_vd', num_classes=num_classes)
  459. class ResNet200_vd(BaseClassifier):
  460. def __init__(self, num_classes=1000):
  461. super(ResNet200_vd, self).__init__(
  462. model_name='ResNet200_vd', num_classes=num_classes)
  463. class AlexNet(BaseClassifier):
  464. def __init__(self, num_classes=1000):
  465. super(AlexNet, self).__init__(
  466. model_name='AlexNet', num_classes=num_classes)
  467. def _get_test_inputs(self, image_shape):
  468. if image_shape is not None:
  469. if len(image_shape) == 2:
  470. image_shape = [None, 3] + image_shape
  471. else:
  472. image_shape = [None, 3, 224, 224]
  473. logging.warning(
  474. '[Important!!!] When exporting inference model for {},'.format(
  475. self.__class__.__name__) +
  476. ' if fixed_input_shape is not set, it will be forcibly set to [None, 3, 224, 224]'
  477. +
  478. 'Please check image shape after transforms is [3, 224, 224], if not, fixed_input_shape '
  479. + 'should be specified manually.')
  480. self._fix_transforms_shape(image_shape[-2:])
  481. input_spec = [
  482. InputSpec(
  483. shape=image_shape, name='image', dtype='float32')
  484. ]
  485. return input_spec
  486. class DarkNet53(BaseClassifier):
  487. def __init__(self, num_classes=1000):
  488. super(DarkNet53, self).__init__(
  489. model_name='DarkNet53', num_classes=num_classes)
  490. class MobileNetV1(BaseClassifier):
  491. def __init__(self, num_classes=1000, scale=1.0):
  492. supported_scale = [.25, .5, .75, 1.0]
  493. if scale not in supported_scale:
  494. logging.warning("scale={} is not supported by MobileNetV1, "
  495. "scale is forcibly set to 1.0".format(scale))
  496. scale = 1.0
  497. if scale == 1:
  498. model_name = 'MobileNetV1'
  499. else:
  500. model_name = 'MobileNetV1_x' + str(scale).replace('.', '_')
  501. self.scale = scale
  502. super(MobileNetV1, self).__init__(
  503. model_name=model_name, num_classes=num_classes)
  504. class MobileNetV2(BaseClassifier):
  505. def __init__(self, num_classes=1000, scale=1.0):
  506. supported_scale = [.25, .5, .75, 1.0, 1.5, 2.0]
  507. if scale not in supported_scale:
  508. logging.warning("scale={} is not supported by MobileNetV2, "
  509. "scale is forcibly set to 1.0".format(scale))
  510. scale = 1.0
  511. if scale == 1:
  512. model_name = 'MobileNetV2'
  513. else:
  514. model_name = 'MobileNetV2_x' + str(scale).replace('.', '_')
  515. super(MobileNetV2, self).__init__(
  516. model_name=model_name, num_classes=num_classes)
  517. class MobileNetV3_small(BaseClassifier):
  518. def __init__(self, num_classes=1000, scale=1.0):
  519. supported_scale = [.35, .5, .75, 1.0, 1.25]
  520. if scale not in supported_scale:
  521. logging.warning("scale={} is not supported by MobileNetV3_small, "
  522. "scale is forcibly set to 1.0".format(scale))
  523. scale = 1.0
  524. model_name = 'MobileNetV3_small_x' + str(float(scale)).replace('.',
  525. '_')
  526. super(MobileNetV3_small, self).__init__(
  527. model_name=model_name, num_classes=num_classes)
  528. class MobileNetV3_small_ssld(BaseClassifier):
  529. def __init__(self, num_classes=1000, scale=1.0):
  530. supported_scale = [.35, 1.0]
  531. if scale not in supported_scale:
  532. logging.warning(
  533. "scale={} is not supported by MobileNetV3_small_ssld, "
  534. "scale is forcibly set to 1.0".format(scale))
  535. scale = 1.0
  536. model_name = 'MobileNetV3_small_x' + str(float(scale)).replace('.',
  537. '_')
  538. super(MobileNetV3_small_ssld, self).__init__(
  539. model_name=model_name, num_classes=num_classes)
  540. self.model_name = model_name + '_ssld'
  541. class MobileNetV3_large(BaseClassifier):
  542. def __init__(self, num_classes=1000, scale=1.0):
  543. supported_scale = [.35, .5, .75, 1.0, 1.25]
  544. if scale not in supported_scale:
  545. logging.warning("scale={} is not supported by MobileNetV3_large, "
  546. "scale is forcibly set to 1.0".format(scale))
  547. scale = 1.0
  548. model_name = 'MobileNetV3_large_x' + str(float(scale)).replace('.',
  549. '_')
  550. super(MobileNetV3_large, self).__init__(
  551. model_name=model_name, num_classes=num_classes)
  552. class MobileNetV3_large_ssld(BaseClassifier):
  553. def __init__(self, num_classes=1000):
  554. super(MobileNetV3_large_ssld, self).__init__(
  555. model_name='MobileNetV3_large_x1_0', num_classes=num_classes)
  556. self.model_name = 'MobileNetV3_large_x1_0_ssld'
  557. class DenseNet121(BaseClassifier):
  558. def __init__(self, num_classes=1000):
  559. super(DenseNet121, self).__init__(
  560. model_name='DenseNet121', num_classes=num_classes)
  561. class DenseNet161(BaseClassifier):
  562. def __init__(self, num_classes=1000):
  563. super(DenseNet161, self).__init__(
  564. model_name='DenseNet161', num_classes=num_classes)
  565. class DenseNet169(BaseClassifier):
  566. def __init__(self, num_classes=1000):
  567. super(DenseNet169, self).__init__(
  568. model_name='DenseNet169', num_classes=num_classes)
  569. class DenseNet201(BaseClassifier):
  570. def __init__(self, num_classes=1000):
  571. super(DenseNet201, self).__init__(
  572. model_name='DenseNet201', num_classes=num_classes)
  573. class DenseNet264(BaseClassifier):
  574. def __init__(self, num_classes=1000):
  575. super(DenseNet264, self).__init__(
  576. model_name='DenseNet264', num_classes=num_classes)
  577. class HRNet_W18_C(BaseClassifier):
  578. def __init__(self, num_classes=1000):
  579. super(HRNet_W18_C, self).__init__(
  580. model_name='HRNet_W18_C', num_classes=num_classes)
  581. class HRNet_W30_C(BaseClassifier):
  582. def __init__(self, num_classes=1000):
  583. super(HRNet_W30_C, self).__init__(
  584. model_name='HRNet_W30_C', num_classes=num_classes)
  585. class HRNet_W32_C(BaseClassifier):
  586. def __init__(self, num_classes=1000):
  587. super(HRNet_W32_C, self).__init__(
  588. model_name='HRNet_W32_C', num_classes=num_classes)
  589. class HRNet_W40_C(BaseClassifier):
  590. def __init__(self, num_classes=1000):
  591. super(HRNet_W40_C, self).__init__(
  592. model_name='HRNet_W40_C', num_classes=num_classes)
  593. class HRNet_W44_C(BaseClassifier):
  594. def __init__(self, num_classes=1000):
  595. super(HRNet_W44_C, self).__init__(
  596. model_name='HRNet_W44_C', num_classes=num_classes)
  597. class HRNet_W48_C(BaseClassifier):
  598. def __init__(self, num_classes=1000):
  599. super(HRNet_W48_C, self).__init__(
  600. model_name='HRNet_W48_C', num_classes=num_classes)
  601. class HRNet_W64_C(BaseClassifier):
  602. def __init__(self, num_classes=1000):
  603. super(HRNet_W64_C, self).__init__(
  604. model_name='HRNet_W64_C', num_classes=num_classes)
  605. class Xception41(BaseClassifier):
  606. def __init__(self, num_classes=1000):
  607. super(Xception41, self).__init__(
  608. model_name='Xception41', num_classes=num_classes)
  609. class Xception65(BaseClassifier):
  610. def __init__(self, num_classes=1000):
  611. super(Xception65, self).__init__(
  612. model_name='Xception65', num_classes=num_classes)
  613. class Xception71(BaseClassifier):
  614. def __init__(self, num_classes=1000):
  615. super(Xception71, self).__init__(
  616. model_name='Xception71', num_classes=num_classes)
  617. class ShuffleNetV2(BaseClassifier):
  618. def __init__(self, num_classes=1000, scale=1.0):
  619. supported_scale = [.25, .33, .5, 1.0, 1.5, 2.0]
  620. if scale not in supported_scale:
  621. logging.warning("scale={} is not supported by ShuffleNetV2, "
  622. "scale is forcibly set to 1.0".format(scale))
  623. scale = 1.0
  624. model_name = 'ShuffleNetV2_x' + str(float(scale)).replace('.', '_')
  625. super(ShuffleNetV2, self).__init__(
  626. model_name=model_name, num_classes=num_classes)
  627. def _get_test_inputs(self, image_shape):
  628. if image_shape is not None:
  629. if len(image_shape) == 2:
  630. image_shape = [None, 3] + image_shape
  631. else:
  632. image_shape = [None, 3, 224, 224]
  633. logging.warning(
  634. '[Important!!!] When exporting inference model for {},'.format(
  635. self.__class__.__name__) +
  636. ' if fixed_input_shape is not set, it will be forcibly set to [None, 3, 224, 224]'
  637. +
  638. 'Please check image shape after transforms is [3, 224, 224], if not, fixed_input_shape '
  639. + 'should be specified manually.')
  640. self._fix_transforms_shape(image_shape[-2:])
  641. input_spec = [
  642. InputSpec(
  643. shape=image_shape, name='image', dtype='float32')
  644. ]
  645. return input_spec
  646. class ShuffleNetV2_swish(BaseClassifier):
  647. def __init__(self, num_classes=1000):
  648. super(ShuffleNetV2_swish, self).__init__(
  649. model_name='ShuffleNetV2_x1_5', num_classes=num_classes)
  650. def _get_test_inputs(self, image_shape):
  651. if image_shape is not None:
  652. if len(image_shape) == 2:
  653. image_shape = [None, 3] + image_shape
  654. else:
  655. image_shape = [None, 3, 224, 224]
  656. logging.warning(
  657. '[Important!!!] When exporting inference model for {},'.format(
  658. self.__class__.__name__) +
  659. ' if fixed_input_shape is not set, it will be forcibly set to [None, 3, 224, 224]'
  660. +
  661. 'Please check image shape after transforms is [3, 224, 224], if not, fixed_input_shape '
  662. + 'should be specified manually.')
  663. self._fix_transforms_shape(image_shape[-2:])
  664. input_spec = [
  665. InputSpec(
  666. shape=image_shape, name='image', dtype='float32')
  667. ]
  668. return input_spec