| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216 |
- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import sys
- import os
- import os.path as osp
- import time
- import cv2
- import numpy as np
- import yaml
- from six import text_type as _text_type
- from paddlelite.lite import *
- class Predictor:
- def __init__(self, model_nb, model_yaml, thread_num, shape):
- if not osp.exists(model_nb):
- print("model nb file is not exists in {}".format(model_xml))
- self.model_nb = model_nb
- self.shape = shape
- config = MobileConfig()
- config.set_model_from_file(model_nb)
- config.set_threads(thread_num)
- if not osp.exists(model_yaml):
- print("model yaml file is not exists in {}".format(model_yaml))
- with open(model_yaml) as f:
- self.info = yaml.load(f.read(), Loader=yaml.Loader)
- self.model_type = self.info['_Attributes']['model_type']
- self.model_name = self.info['Model']
- self.num_classes = self.info['_Attributes']['num_classes']
- self.labels = self.info['_Attributes']['labels']
- if self.info['Model'] == 'MaskRCNN':
- if self.info['_init_params']['with_fpn']:
- self.mask_head_resolution = 28
- else:
- self.mask_head_resolution = 14
- transforms_mode = self.info.get('TransformsMode', 'RGB')
- if transforms_mode == 'RGB':
- to_rgb = True
- else:
- to_rgb = False
- self.transforms = self.build_transforms(self.info['Transforms'],
- to_rgb)
- self.predictor = create_paddle_predictor(config)
- self.total_time = 0
- self.count_num = 0
- def build_transforms(self, transforms_info, to_rgb=True):
- if self.model_type == "classifier":
- import transforms.cls_transforms as transforms
- elif self.model_type == "detector":
- import transforms.det_transforms as transforms
- elif self.model_type == "segmenter":
- import transforms.seg_transforms as transforms
- op_list = list()
- for op_info in transforms_info:
- op_name = list(op_info.keys())[0]
- op_attr = op_info[op_name]
- if not hasattr(transforms, op_name):
- raise Exception(
- "There's no operator named '{}' in transforms of {}".
- format(op_name, self.model_type))
- op_list.append(getattr(transforms, op_name)(**op_attr))
- eval_transforms = transforms.Compose(op_list)
- if hasattr(eval_transforms, 'to_rgb'):
- eval_transforms.to_rgb = to_rgb
- self.arrange_transforms(eval_transforms)
- return eval_transforms
- def arrange_transforms(self, eval_transforms):
- if self.model_type == 'classifier':
- import transforms.cls_transforms as transforms
- arrange_transform = transforms.ArrangeClassifier
- elif self.model_type == 'segmenter':
- import transforms.seg_transforms as transforms
- arrange_transform = transforms.ArrangeSegmenter
- elif self.model_type == 'detector':
- import transforms.det_transforms as transforms
- arrange_name = 'Arrange{}'.format(self.model_name)
- arrange_transform = getattr(transforms, arrange_name)
- else:
- raise Exception("Unrecognized model type: {}".format(
- self.model_type))
- if type(eval_transforms.transforms[-1]).__name__.startswith('Arrange'):
- eval_transforms.transforms[-1] = arrange_transform(mode='test')
- else:
- eval_transforms.transforms.append(arrange_transform(mode='test'))
- def raw_predict(self, preprocessed_input):
- self.count_num += 1
- input_tensor = self.predictor.get_input(0)
- input_tensor.resize(self.shape)
- input_tensor.set_float_data(preprocessed_input['image'])
- if self.model_name == "YOLOv3":
- input_size_tensor = self.predictor.get_input(1)
- input_size_tensor.resize([1, 2])
- input_size_tensor.set_float_data(preprocessed_input['im_size'])
- #Start inference
- start_time = time.time()
- self.predictor.run()
- time_use = time.time() - start_time
- if (self.count_num >= 20):
- self.total_time += time_use
- if (self.count_num >= 120):
- print("avgtime:", self.total_time * 10)
- #Processing output blob
- print("Processing output blob")
- return
- def preprocess(self, image):
- res = dict()
- if self.model_type == "classifier":
- im, = self.transforms(image)
- im = np.expand_dims(im, axis=0).copy()
- im = im.flatten()
- res['image'] = im
- elif self.model_type == "detector":
- if self.model_name == "YOLOv3":
- im, im_shape = self.transforms(image)
- im = np.expand_dims(im, axis=0).copy()
- im_shape = np.expand_dims(im_shape, axis=0).copy()
- res['image'] = im
- res['im_size'] = im_shape
- if self.model_name.count('RCNN') > 0:
- im, im_resize_info, im_shape = self.transforms(image)
- im = np.expand_dims(im, axis=0).copy()
- im_resize_info = np.expand_dims(im_resize_info, axis=0).copy()
- im_shape = np.expand_dims(im_shape, axis=0).copy()
- res['image'] = im
- res['im_info'] = im_resize_info
- res['im_shape'] = im_shape
- elif self.model_type == "segmenter":
- im, im_info = self.transforms(image)
- im = np.expand_dims(im, axis=0).copy()
- #np.savetxt('./input_data.txt',im.flatten())
- res['image'] = im
- res['im_info'] = im_info
- return res
- def classifier_postprocess(self, topk=1):
- output_tensor = self.predictor.get_output(0)
- output_data = output_tensor.float_data()
- true_topk = min(self.num_classes, topk)
- pred_label = np.argsort(-np.array(output_data))[:true_topk]
- result = [{
- 'category_id': l,
- 'category': self.labels[l],
- 'score': output_data[l],
- } for l in pred_label]
- print(result)
- return result
- def segmenter_postprocess(self, preprocessed_inputs):
- out_label_tensor = self.predictor.get_output(0)
- out_label = out_label_tensor.float_data()
- label_shape = tuple(out_label_tensor.shape())
- label_map = np.array(out_label).astype('uint8')
- label_map = label_map.reshap(label_shape)
- label_map = np.squeeze(label_map)
- out_score_tensor = self.predictor.get_output(1)
- out_score = out_score_tensor.float_data()
- score_shape = tuple(out_score_tensor.shape())
- score_map = np.array(out_score)
- score_map = score_map.reshap(score_shape)
- score_map = np.transpose(score_map, (1, 2, 0))
- im_info = preprocessed_inputs['im_info']
- for info in im_info[::-1]:
- if info[0] == 'resize':
- w, h = info[1][1], info[1][0]
- label_map = cv2.resize(label_map, (w, h), cv2.INTER_NEAREST)
- score_map = cv2.resize(score_map, (w, h), cv2.INTER_LINEAR)
- elif info[0] == 'padding':
- w, h = info[1][1], info[1][0]
- label_map = label_map[0:h, 0:w]
- score_map = score_map[0:h, 0:w, :]
- else:
- raise Exception("Unexpected info '{}' in im_info".format(info[
- 0]))
- return {'label_map': label_map, 'score_map': score_map}
- def detector_postprocess(self, preprocessed_inputs):
- out_tensor = self.predictor.get_output(0)
- out_data = out_tensor.float_data()
- out_shape = tuple(out_tensor.shape())
- out_data = np.array(out_data)
- outputs = label_data.reshap(out_shape)
- result = []
- for out in outputs:
- result.append(out.tolist())
- return result
- def predict(self, image, topk=1, threshold=0.5):
- preprocessed_input = self.preprocess(image)
- self.raw_predict(preprocessed_input)
- if self.model_type == "classifier":
- results = self.classifier_postprocess(topk)
- elif self.model_type == "detector":
- results = self.detector_postprocess(preprocessed_input)
- elif self.model_type == "segmenter":
- pass
- results = self.segmenter_postprocess(preprocessed_input)
|