det_transforms.py 57 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229
  1. # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. try:
  15. from collections.abc import Sequence
  16. except Exception:
  17. from collections import Sequence
  18. import random
  19. import os.path as osp
  20. import numpy as np
  21. import cv2
  22. from PIL import Image, ImageEnhance
  23. from .imgaug_support import execute_imgaug
  24. from .ops import *
  25. from .box_utils import *
  26. class DetTransform:
  27. """检测数据处理基类
  28. """
  29. def __init__(self):
  30. pass
  31. class Compose(DetTransform):
  32. """根据数据预处理/增强列表对输入数据进行操作。
  33. 所有操作的输入图像流形状均是[H, W, C],其中H为图像高,W为图像宽,C为图像通道数。
  34. Args:
  35. transforms (list): 数据预处理/增强列表。
  36. Raises:
  37. TypeError: 形参数据类型不满足需求。
  38. ValueError: 数据长度不匹配。
  39. """
  40. def __init__(self, transforms):
  41. if not isinstance(transforms, list):
  42. raise TypeError('The transforms must be a list!')
  43. if len(transforms) < 1:
  44. raise ValueError('The length of transforms ' + \
  45. 'must be equal or larger than 1!')
  46. self.transforms = transforms
  47. self.use_mixup = False
  48. for t in self.transforms:
  49. if type(t).__name__ == 'MixupImage':
  50. self.use_mixup = True
  51. # 检查transforms里面的操作,目前支持PaddleX定义的或者是imgaug操作
  52. for op in self.transforms:
  53. if not isinstance(op, DetTransform):
  54. import imgaug.augmenters as iaa
  55. if not isinstance(op, iaa.Augmenter):
  56. raise Exception(
  57. "Elements in transforms should be defined in 'paddlex.det.transforms' or class of imgaug.augmenters.Augmenter, see docs here: https://paddlex.readthedocs.io/zh_CN/latest/apis/transforms/"
  58. )
  59. def __call__(self, im, im_info=None, label_info=None):
  60. """
  61. Args:
  62. im (str/np.ndarray): 图像路径/图像np.ndarray数据。
  63. im_info (dict): 存储与图像相关的信息,dict中的字段如下:
  64. - im_id (np.ndarray): 图像序列号,形状为(1,)。
  65. - image_shape (np.ndarray): 图像原始大小,形状为(2,),
  66. image_shape[0]为高,image_shape[1]为宽。
  67. - mixup (list): list为[im, im_info, label_info],分别对应
  68. 与当前图像进行mixup的图像np.ndarray数据、图像相关信息、标注框相关信息;
  69. 注意,当前epoch若无需进行mixup,则无该字段。
  70. label_info (dict): 存储与标注框相关的信息,dict中的字段如下:
  71. - gt_bbox (np.ndarray): 真实标注框坐标[x1, y1, x2, y2],形状为(n, 4),
  72. 其中n代表真实标注框的个数。
  73. - gt_class (np.ndarray): 每个真实标注框对应的类别序号,形状为(n, 1),
  74. 其中n代表真实标注框的个数。
  75. - gt_score (np.ndarray): 每个真实标注框对应的混合得分,形状为(n, 1),
  76. 其中n代表真实标注框的个数。
  77. - gt_poly (list): 每个真实标注框内的多边形分割区域,每个分割区域由点的x、y坐标组成,
  78. 长度为n,其中n代表真实标注框的个数。
  79. - is_crowd (np.ndarray): 每个真实标注框中是否是一组对象,形状为(n, 1),
  80. 其中n代表真实标注框的个数。
  81. - difficult (np.ndarray): 每个真实标注框中的对象是否为难识别对象,形状为(n, 1),
  82. 其中n代表真实标注框的个数。
  83. Returns:
  84. tuple: 根据网络所需字段所组成的tuple;
  85. 字段由transforms中的最后一个数据预处理操作决定。
  86. """
  87. def decode_image(im_file, im_info, label_info):
  88. if im_info is None:
  89. im_info = dict()
  90. if isinstance(im_file, np.ndarray):
  91. if len(im_file.shape) != 3:
  92. raise Exception(
  93. "im should be 3-dimensions, but now is {}-dimensions".
  94. format(len(im_file.shape)))
  95. im = im_file
  96. else:
  97. try:
  98. im = cv2.imread(im_file).astype('float32')
  99. except:
  100. raise TypeError('Can\'t read The image file {}!'.format(
  101. im_file))
  102. im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
  103. # make default im_info with [h, w, 1]
  104. im_info['im_resize_info'] = np.array(
  105. [im.shape[0], im.shape[1], 1.], dtype=np.float32)
  106. im_info['image_shape'] = np.array([im.shape[0],
  107. im.shape[1]]).astype('int32')
  108. if not self.use_mixup:
  109. if 'mixup' in im_info:
  110. del im_info['mixup']
  111. # decode mixup image
  112. if 'mixup' in im_info:
  113. im_info['mixup'] = \
  114. decode_image(im_info['mixup'][0],
  115. im_info['mixup'][1],
  116. im_info['mixup'][2])
  117. if label_info is None:
  118. return (im, im_info)
  119. else:
  120. return (im, im_info, label_info)
  121. outputs = decode_image(im, im_info, label_info)
  122. im = outputs[0]
  123. im_info = outputs[1]
  124. if len(outputs) == 3:
  125. label_info = outputs[2]
  126. for op in self.transforms:
  127. if im is None:
  128. return None
  129. if isinstance(op, DetTransform):
  130. outputs = op(im, im_info, label_info)
  131. im = outputs[0]
  132. else:
  133. im = execute_imgaug(op, im)
  134. if label_info is not None:
  135. outputs = (im, im_info, label_info)
  136. else:
  137. outputs = (im, im_info)
  138. return outputs
  139. class ResizeByShort(DetTransform):
  140. """根据图像的短边调整图像大小(resize)。
  141. 1. 获取图像的长边和短边长度。
  142. 2. 根据短边与short_size的比例,计算长边的目标长度,
  143. 此时高、宽的resize比例为short_size/原图短边长度。
  144. 3. 如果max_size>0,调整resize比例:
  145. 如果长边的目标长度>max_size,则高、宽的resize比例为max_size/原图长边长度。
  146. 4. 根据调整大小的比例对图像进行resize。
  147. Args:
  148. target_size (int): 短边目标长度。默认为800。
  149. max_size (int): 长边目标长度的最大限制。默认为1333。
  150. Raises:
  151. TypeError: 形参数据类型不满足需求。
  152. """
  153. def __init__(self, short_size=800, max_size=1333):
  154. self.max_size = int(max_size)
  155. if not isinstance(short_size, int):
  156. raise TypeError(
  157. "Type of short_size is invalid. Must be Integer, now is {}".
  158. format(type(short_size)))
  159. self.short_size = short_size
  160. if not (isinstance(self.max_size, int)):
  161. raise TypeError("max_size: input type is invalid.")
  162. def __call__(self, im, im_info=None, label_info=None):
  163. """
  164. Args:
  165. im (numnp.ndarraypy): 图像np.ndarray数据。
  166. im_info (dict, 可选): 存储与图像相关的信息。
  167. label_info (dict, 可选): 存储与标注框相关的信息。
  168. Returns:
  169. tuple: 当label_info为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
  170. 当label_info不为空时,返回的tuple为(im, im_info, label_info),分别对应图像np.ndarray数据、
  171. 存储与标注框相关信息的字典。
  172. 其中,im_info更新字段为:
  173. - im_resize_info (np.ndarray): resize后的图像高、resize后的图像宽、resize后的图像相对原始图的缩放比例
  174. 三者组成的np.ndarray,形状为(3,)。
  175. Raises:
  176. TypeError: 形参数据类型不满足需求。
  177. ValueError: 数据长度不匹配。
  178. """
  179. if im_info is None:
  180. im_info = dict()
  181. if not isinstance(im, np.ndarray):
  182. raise TypeError("ResizeByShort: image type is not numpy.")
  183. if len(im.shape) != 3:
  184. raise ValueError('ResizeByShort: image is not 3-dimensional.')
  185. im_short_size = min(im.shape[0], im.shape[1])
  186. im_long_size = max(im.shape[0], im.shape[1])
  187. scale = float(self.short_size) / im_short_size
  188. if self.max_size > 0 and np.round(scale *
  189. im_long_size) > self.max_size:
  190. scale = float(self.max_size) / float(im_long_size)
  191. resized_width = int(round(im.shape[1] * scale))
  192. resized_height = int(round(im.shape[0] * scale))
  193. im_resize_info = [resized_height, resized_width, scale]
  194. im = cv2.resize(
  195. im, (resized_width, resized_height),
  196. interpolation=cv2.INTER_LINEAR)
  197. im_info['im_resize_info'] = np.array(im_resize_info).astype(np.float32)
  198. if label_info is None:
  199. return (im, im_info)
  200. else:
  201. return (im, im_info, label_info)
  202. class Padding(DetTransform):
  203. """1.将图像的长和宽padding至coarsest_stride的倍数。如输入图像为[300, 640],
  204. `coarest_stride`为32,则由于300不为32的倍数,因此在图像最右和最下使用0值
  205. 进行padding,最终输出图像为[320, 640]。
  206. 2.或者,将图像的长和宽padding到target_size指定的shape,如输入的图像为[300,640],
  207. a. `target_size` = 960,在图像最右和最下使用0值进行padding,最终输出
  208. 图像为[960, 960]。
  209. b. `target_size` = [640, 960],在图像最右和最下使用0值进行padding,最终
  210. 输出图像为[640, 960]。
  211. 1. 如果coarsest_stride为1,target_size为None则直接返回。
  212. 2. 获取图像的高H、宽W。
  213. 3. 计算填充后图像的高H_new、宽W_new。
  214. 4. 构建大小为(H_new, W_new, 3)像素值为0的np.ndarray,
  215. 并将原图的np.ndarray粘贴于左上角。
  216. Args:
  217. coarsest_stride (int): 填充后的图像长、宽为该参数的倍数,默认为1。
  218. target_size (int|list|tuple): 填充后的图像长、宽,默认为None,coarset_stride优先级更高。
  219. Raises:
  220. TypeError: 形参`target_size`数据类型不满足需求。
  221. ValueError: 形参`target_size`为(list|tuple)时,长度不满足需求。
  222. """
  223. def __init__(self, coarsest_stride=1, target_size=None):
  224. self.coarsest_stride = coarsest_stride
  225. if target_size is not None:
  226. if not isinstance(target_size, int):
  227. if not isinstance(target_size, tuple) and not isinstance(
  228. target_size, list):
  229. raise TypeError(
  230. "Padding: Type of target_size must in (int|list|tuple)."
  231. )
  232. elif len(target_size) != 2:
  233. raise ValueError(
  234. "Padding: Length of target_size must equal 2.")
  235. self.target_size = target_size
  236. def __call__(self, im, im_info=None, label_info=None):
  237. """
  238. Args:
  239. im (numnp.ndarraypy): 图像np.ndarray数据。
  240. im_info (dict, 可选): 存储与图像相关的信息。
  241. label_info (dict, 可选): 存储与标注框相关的信息。
  242. Returns:
  243. tuple: 当label_info为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
  244. 当label_info不为空时,返回的tuple为(im, im_info, label_info),分别对应图像np.ndarray数据、
  245. 存储与标注框相关信息的字典。
  246. Raises:
  247. TypeError: 形参数据类型不满足需求。
  248. ValueError: 数据长度不匹配。
  249. ValueError: coarsest_stride,target_size需有且只有一个被指定。
  250. ValueError: target_size小于原图的大小。
  251. """
  252. if im_info is None:
  253. im_info = dict()
  254. if not isinstance(im, np.ndarray):
  255. raise TypeError("Padding: image type is not numpy.")
  256. if len(im.shape) != 3:
  257. raise ValueError('Padding: image is not 3-dimensional.')
  258. im_h, im_w, im_c = im.shape[:]
  259. if isinstance(self.target_size, int):
  260. padding_im_h = self.target_size
  261. padding_im_w = self.target_size
  262. elif isinstance(self.target_size, list) or isinstance(self.target_size,
  263. tuple):
  264. padding_im_w = self.target_size[0]
  265. padding_im_h = self.target_size[1]
  266. elif self.coarsest_stride > 0:
  267. padding_im_h = int(
  268. np.ceil(im_h / self.coarsest_stride) * self.coarsest_stride)
  269. padding_im_w = int(
  270. np.ceil(im_w / self.coarsest_stride) * self.coarsest_stride)
  271. else:
  272. raise ValueError(
  273. "coarsest_stridei(>1) or target_size(list|int) need setting in Padding transform"
  274. )
  275. pad_height = padding_im_h - im_h
  276. pad_width = padding_im_w - im_w
  277. if pad_height < 0 or pad_width < 0:
  278. raise ValueError(
  279. 'the size of image should be less than target_size, but the size of image ({}, {}), is larger than target_size ({}, {})'
  280. .format(im_w, im_h, padding_im_w, padding_im_h))
  281. padding_im = np.zeros(
  282. (padding_im_h, padding_im_w, im_c), dtype=np.float32)
  283. padding_im[:im_h, :im_w, :] = im
  284. if label_info is None:
  285. return (padding_im, im_info)
  286. else:
  287. return (padding_im, im_info, label_info)
  288. class Resize(DetTransform):
  289. """调整图像大小(resize)。
  290. - 当目标大小(target_size)类型为int时,根据插值方式,
  291. 将图像resize为[target_size, target_size]。
  292. - 当目标大小(target_size)类型为list或tuple时,根据插值方式,
  293. 将图像resize为target_size。
  294. 注意:当插值方式为“RANDOM”时,则随机选取一种插值方式进行resize。
  295. Args:
  296. target_size (int/list/tuple): 短边目标长度。默认为608。
  297. interp (str): resize的插值方式,与opencv的插值方式对应,取值范围为
  298. ['NEAREST', 'LINEAR', 'CUBIC', 'AREA', 'LANCZOS4', 'RANDOM']。默认为"LINEAR"。
  299. Raises:
  300. TypeError: 形参数据类型不满足需求。
  301. ValueError: 插值方式不在['NEAREST', 'LINEAR', 'CUBIC',
  302. 'AREA', 'LANCZOS4', 'RANDOM']中。
  303. """
  304. # The interpolation mode
  305. interp_dict = {
  306. 'NEAREST': cv2.INTER_NEAREST,
  307. 'LINEAR': cv2.INTER_LINEAR,
  308. 'CUBIC': cv2.INTER_CUBIC,
  309. 'AREA': cv2.INTER_AREA,
  310. 'LANCZOS4': cv2.INTER_LANCZOS4
  311. }
  312. def __init__(self, target_size=608, interp='LINEAR'):
  313. self.interp = interp
  314. if not (interp == "RANDOM" or interp in self.interp_dict):
  315. raise ValueError("interp should be one of {}".format(
  316. self.interp_dict.keys()))
  317. if isinstance(target_size, list) or isinstance(target_size, tuple):
  318. if len(target_size) != 2:
  319. raise TypeError(
  320. 'when target is list or tuple, it should include 2 elements, but it is {}'
  321. .format(target_size))
  322. elif not isinstance(target_size, int):
  323. raise TypeError(
  324. "Type of target_size is invalid. Must be Integer or List or tuple, now is {}"
  325. .format(type(target_size)))
  326. self.target_size = target_size
  327. def __call__(self, im, im_info=None, label_info=None):
  328. """
  329. Args:
  330. im (np.ndarray): 图像np.ndarray数据。
  331. im_info (dict, 可选): 存储与图像相关的信息。
  332. label_info (dict, 可选): 存储与标注框相关的信息。
  333. Returns:
  334. tuple: 当label_info为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
  335. 当label_info不为空时,返回的tuple为(im, im_info, label_info),分别对应图像np.ndarray数据、
  336. 存储与标注框相关信息的字典。
  337. Raises:
  338. TypeError: 形参数据类型不满足需求。
  339. ValueError: 数据长度不匹配。
  340. """
  341. if im_info is None:
  342. im_info = dict()
  343. if not isinstance(im, np.ndarray):
  344. raise TypeError("Resize: image type is not numpy.")
  345. if len(im.shape) != 3:
  346. raise ValueError('Resize: image is not 3-dimensional.')
  347. if self.interp == "RANDOM":
  348. interp = random.choice(list(self.interp_dict.keys()))
  349. else:
  350. interp = self.interp
  351. im = resize(im, self.target_size, self.interp_dict[interp])
  352. if label_info is None:
  353. return (im, im_info)
  354. else:
  355. return (im, im_info, label_info)
  356. class RandomHorizontalFlip(DetTransform):
  357. """随机翻转图像、标注框、分割信息,模型训练时的数据增强操作。
  358. 1. 随机采样一个0-1之间的小数,当小数小于水平翻转概率时,
  359. 执行2-4步操作,否则直接返回。
  360. 2. 水平翻转图像。
  361. 3. 计算翻转后的真实标注框的坐标,更新label_info中的gt_bbox信息。
  362. 4. 计算翻转后的真实分割区域的坐标,更新label_info中的gt_poly信息。
  363. Args:
  364. prob (float): 随机水平翻转的概率。默认为0.5。
  365. Raises:
  366. TypeError: 形参数据类型不满足需求。
  367. """
  368. def __init__(self, prob=0.5):
  369. self.prob = prob
  370. if not isinstance(self.prob, float):
  371. raise TypeError("RandomHorizontalFlip: input type is invalid.")
  372. def __call__(self, im, im_info=None, label_info=None):
  373. """
  374. Args:
  375. im (np.ndarray): 图像np.ndarray数据。
  376. im_info (dict, 可选): 存储与图像相关的信息。
  377. label_info (dict, 可选): 存储与标注框相关的信息。
  378. Returns:
  379. tuple: 当label_info为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
  380. 当label_info不为空时,返回的tuple为(im, im_info, label_info),分别对应图像np.ndarray数据、
  381. 存储与标注框相关信息的字典。
  382. 其中,im_info更新字段为:
  383. - gt_bbox (np.ndarray): 水平翻转后的标注框坐标[x1, y1, x2, y2],形状为(n, 4),
  384. 其中n代表真实标注框的个数。
  385. - gt_poly (list): 水平翻转后的多边形分割区域的x、y坐标,长度为n,
  386. 其中n代表真实标注框的个数。
  387. Raises:
  388. TypeError: 形参数据类型不满足需求。
  389. ValueError: 数据长度不匹配。
  390. """
  391. if not isinstance(im, np.ndarray):
  392. raise TypeError(
  393. "RandomHorizontalFlip: image is not a numpy array.")
  394. if len(im.shape) != 3:
  395. raise ValueError(
  396. "RandomHorizontalFlip: image is not 3-dimensional.")
  397. if im_info is None or label_info is None:
  398. raise TypeError(
  399. 'Cannot do RandomHorizontalFlip! ' +
  400. 'Becasuse the im_info and label_info can not be None!')
  401. if 'gt_bbox' not in label_info:
  402. raise TypeError('Cannot do RandomHorizontalFlip! ' + \
  403. 'Becasuse gt_bbox is not in label_info!')
  404. image_shape = im_info['image_shape']
  405. gt_bbox = label_info['gt_bbox']
  406. height = image_shape[0]
  407. width = image_shape[1]
  408. if np.random.uniform(0, 1) < self.prob:
  409. im = horizontal_flip(im)
  410. if gt_bbox.shape[0] == 0:
  411. if label_info is None:
  412. return (im, im_info)
  413. else:
  414. return (im, im_info, label_info)
  415. label_info['gt_bbox'] = box_horizontal_flip(gt_bbox, width)
  416. if 'gt_poly' in label_info and \
  417. len(label_info['gt_poly']) != 0:
  418. label_info['gt_poly'] = segms_horizontal_flip(
  419. label_info['gt_poly'], height, width)
  420. if label_info is None:
  421. return (im, im_info)
  422. else:
  423. return (im, im_info, label_info)
  424. class Normalize(DetTransform):
  425. """对图像进行标准化。
  426. 1. 归一化图像到到区间[0.0, 1.0]。
  427. 2. 对图像进行减均值除以标准差操作。
  428. Args:
  429. mean (list): 图像数据集的均值。默认为[0.485, 0.456, 0.406]。
  430. std (list): 图像数据集的标准差。默认为[0.229, 0.224, 0.225]。
  431. Raises:
  432. TypeError: 形参数据类型不满足需求。
  433. """
  434. def __init__(self, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]):
  435. self.mean = mean
  436. self.std = std
  437. if not (isinstance(self.mean, list) and isinstance(self.std, list)):
  438. raise TypeError("NormalizeImage: input type is invalid.")
  439. from functools import reduce
  440. if reduce(lambda x, y: x * y, self.std) == 0:
  441. raise TypeError('NormalizeImage: std is invalid!')
  442. def __call__(self, im, im_info=None, label_info=None):
  443. """
  444. Args:
  445. im (numnp.ndarraypy): 图像np.ndarray数据。
  446. im_info (dict, 可选): 存储与图像相关的信息。
  447. label_info (dict, 可选): 存储与标注框相关的信息。
  448. Returns:
  449. tuple: 当label_info为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
  450. 当label_info不为空时,返回的tuple为(im, im_info, label_info),分别对应图像np.ndarray数据、
  451. 存储与标注框相关信息的字典。
  452. """
  453. mean = np.array(self.mean)[np.newaxis, np.newaxis, :]
  454. std = np.array(self.std)[np.newaxis, np.newaxis, :]
  455. im = normalize(im, mean, std)
  456. if label_info is None:
  457. return (im, im_info)
  458. else:
  459. return (im, im_info, label_info)
  460. class RandomDistort(DetTransform):
  461. """以一定的概率对图像进行随机像素内容变换,模型训练时的数据增强操作
  462. 1. 对变换的操作顺序进行随机化操作。
  463. 2. 按照1中的顺序以一定的概率在范围[-range, range]对图像进行随机像素内容变换。
  464. Args:
  465. brightness_range (float): 明亮度因子的范围。默认为0.5。
  466. brightness_prob (float): 随机调整明亮度的概率。默认为0.5。
  467. contrast_range (float): 对比度因子的范围。默认为0.5。
  468. contrast_prob (float): 随机调整对比度的概率。默认为0.5。
  469. saturation_range (float): 饱和度因子的范围。默认为0.5。
  470. saturation_prob (float): 随机调整饱和度的概率。默认为0.5。
  471. hue_range (int): 色调因子的范围。默认为18。
  472. hue_prob (float): 随机调整色调的概率。默认为0.5。
  473. """
  474. def __init__(self,
  475. brightness_range=0.5,
  476. brightness_prob=0.5,
  477. contrast_range=0.5,
  478. contrast_prob=0.5,
  479. saturation_range=0.5,
  480. saturation_prob=0.5,
  481. hue_range=18,
  482. hue_prob=0.5):
  483. self.brightness_range = brightness_range
  484. self.brightness_prob = brightness_prob
  485. self.contrast_range = contrast_range
  486. self.contrast_prob = contrast_prob
  487. self.saturation_range = saturation_range
  488. self.saturation_prob = saturation_prob
  489. self.hue_range = hue_range
  490. self.hue_prob = hue_prob
  491. def __call__(self, im, im_info=None, label_info=None):
  492. """
  493. Args:
  494. im (np.ndarray): 图像np.ndarray数据。
  495. im_info (dict, 可选): 存储与图像相关的信息。
  496. label_info (dict, 可选): 存储与标注框相关的信息。
  497. Returns:
  498. tuple: 当label_info为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
  499. 当label_info不为空时,返回的tuple为(im, im_info, label_info),分别对应图像np.ndarray数据、
  500. 存储与标注框相关信息的字典。
  501. """
  502. brightness_lower = 1 - self.brightness_range
  503. brightness_upper = 1 + self.brightness_range
  504. contrast_lower = 1 - self.contrast_range
  505. contrast_upper = 1 + self.contrast_range
  506. saturation_lower = 1 - self.saturation_range
  507. saturation_upper = 1 + self.saturation_range
  508. hue_lower = -self.hue_range
  509. hue_upper = self.hue_range
  510. ops = [brightness, contrast, saturation, hue]
  511. random.shuffle(ops)
  512. params_dict = {
  513. 'brightness': {
  514. 'brightness_lower': brightness_lower,
  515. 'brightness_upper': brightness_upper
  516. },
  517. 'contrast': {
  518. 'contrast_lower': contrast_lower,
  519. 'contrast_upper': contrast_upper
  520. },
  521. 'saturation': {
  522. 'saturation_lower': saturation_lower,
  523. 'saturation_upper': saturation_upper
  524. },
  525. 'hue': {
  526. 'hue_lower': hue_lower,
  527. 'hue_upper': hue_upper
  528. }
  529. }
  530. prob_dict = {
  531. 'brightness': self.brightness_prob,
  532. 'contrast': self.contrast_prob,
  533. 'saturation': self.saturation_prob,
  534. 'hue': self.hue_prob
  535. }
  536. for id in range(4):
  537. params = params_dict[ops[id].__name__]
  538. prob = prob_dict[ops[id].__name__]
  539. params['im'] = im
  540. if np.random.uniform(0, 1) < prob:
  541. im = ops[id](**params)
  542. if label_info is None:
  543. return (im, im_info)
  544. else:
  545. return (im, im_info, label_info)
  546. class MixupImage(DetTransform):
  547. """对图像进行mixup操作,模型训练时的数据增强操作,目前仅YOLOv3模型支持该transform。
  548. 当label_info中不存在mixup字段时,直接返回,否则进行下述操作:
  549. 1. 从随机beta分布中抽取出随机因子factor。
  550. 2.
  551. - 当factor>=1.0时,去除label_info中的mixup字段,直接返回。
  552. - 当factor<=0.0时,直接返回label_info中的mixup字段,并在label_info中去除该字段。
  553. - 其余情况,执行下述操作:
  554. (1)原图像乘以factor,mixup图像乘以(1-factor),叠加2个结果。
  555. (2)拼接原图像标注框和mixup图像标注框。
  556. (3)拼接原图像标注框类别和mixup图像标注框类别。
  557. (4)原图像标注框混合得分乘以factor,mixup图像标注框混合得分乘以(1-factor),叠加2个结果。
  558. 3. 更新im_info中的image_shape信息。
  559. Args:
  560. alpha (float): 随机beta分布的下限。默认为1.5。
  561. beta (float): 随机beta分布的上限。默认为1.5。
  562. mixup_epoch (int): 在前mixup_epoch轮使用mixup增强操作;当该参数为-1时,该策略不会生效。
  563. 默认为-1。
  564. Raises:
  565. ValueError: 数据长度不匹配。
  566. """
  567. def __init__(self, alpha=1.5, beta=1.5, mixup_epoch=-1):
  568. self.alpha = alpha
  569. self.beta = beta
  570. if self.alpha <= 0.0:
  571. raise ValueError("alpha shold be positive in MixupImage")
  572. if self.beta <= 0.0:
  573. raise ValueError("beta shold be positive in MixupImage")
  574. self.mixup_epoch = mixup_epoch
  575. def _mixup_img(self, img1, img2, factor):
  576. h = max(img1.shape[0], img2.shape[0])
  577. w = max(img1.shape[1], img2.shape[1])
  578. img = np.zeros((h, w, img1.shape[2]), 'float32')
  579. img[:img1.shape[0], :img1.shape[1], :] = \
  580. img1.astype('float32') * factor
  581. img[:img2.shape[0], :img2.shape[1], :] += \
  582. img2.astype('float32') * (1.0 - factor)
  583. return img.astype('float32')
  584. def __call__(self, im, im_info=None, label_info=None):
  585. """
  586. Args:
  587. im (np.ndarray): 图像np.ndarray数据。
  588. im_info (dict, 可选): 存储与图像相关的信息。
  589. label_info (dict, 可选): 存储与标注框相关的信息。
  590. Returns:
  591. tuple: 当label_info为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
  592. 当label_info不为空时,返回的tuple为(im, im_info, label_info),分别对应图像np.ndarray数据、
  593. 存储与标注框相关信息的字典。
  594. 其中,im_info更新字段为:
  595. - image_shape (np.ndarray): mixup后的图像高、宽二者组成的np.ndarray,形状为(2,)。
  596. im_info删除的字段:
  597. - mixup (list): 与当前字段进行mixup的图像相关信息。
  598. label_info更新字段为:
  599. - gt_bbox (np.ndarray): mixup后真实标注框坐标,形状为(n, 4),
  600. 其中n代表真实标注框的个数。
  601. - gt_class (np.ndarray): mixup后每个真实标注框对应的类别序号,形状为(n, 1),
  602. 其中n代表真实标注框的个数。
  603. - gt_score (np.ndarray): mixup后每个真实标注框对应的混合得分,形状为(n, 1),
  604. 其中n代表真实标注框的个数。
  605. Raises:
  606. TypeError: 形参数据类型不满足需求。
  607. """
  608. if im_info is None:
  609. raise TypeError('Cannot do MixupImage! ' +
  610. 'Becasuse the im_info can not be None!')
  611. if 'mixup' not in im_info:
  612. if label_info is None:
  613. return (im, im_info)
  614. else:
  615. return (im, im_info, label_info)
  616. factor = np.random.beta(self.alpha, self.beta)
  617. factor = max(0.0, min(1.0, factor))
  618. if im_info['epoch'] > self.mixup_epoch \
  619. or factor >= 1.0:
  620. im_info.pop('mixup')
  621. if label_info is None:
  622. return (im, im_info)
  623. else:
  624. return (im, im_info, label_info)
  625. if factor <= 0.0:
  626. return im_info.pop('mixup')
  627. im = self._mixup_img(im, im_info['mixup'][0], factor)
  628. if label_info is None:
  629. raise TypeError('Cannot do MixupImage! ' +
  630. 'Becasuse the label_info can not be None!')
  631. if 'gt_bbox' not in label_info or \
  632. 'gt_class' not in label_info or \
  633. 'gt_score' not in label_info:
  634. raise TypeError('Cannot do MixupImage! ' + \
  635. 'Becasuse gt_bbox/gt_class/gt_score is not in label_info!')
  636. gt_bbox1 = label_info['gt_bbox']
  637. gt_bbox2 = im_info['mixup'][2]['gt_bbox']
  638. gt_bbox = np.concatenate((gt_bbox1, gt_bbox2), axis=0)
  639. gt_class1 = label_info['gt_class']
  640. gt_class2 = im_info['mixup'][2]['gt_class']
  641. gt_class = np.concatenate((gt_class1, gt_class2), axis=0)
  642. gt_score1 = label_info['gt_score']
  643. gt_score2 = im_info['mixup'][2]['gt_score']
  644. gt_score = np.concatenate(
  645. (gt_score1 * factor, gt_score2 * (1. - factor)), axis=0)
  646. if 'gt_poly' in label_info:
  647. gt_poly1 = label_info['gt_poly']
  648. gt_poly2 = im_info['mixup'][2]['gt_poly']
  649. label_info['gt_poly'] = gt_poly1 + gt_poly2
  650. is_crowd1 = label_info['is_crowd']
  651. is_crowd2 = im_info['mixup'][2]['is_crowd']
  652. is_crowd = np.concatenate((is_crowd1, is_crowd2), axis=0)
  653. label_info['gt_bbox'] = gt_bbox
  654. label_info['gt_score'] = gt_score
  655. label_info['gt_class'] = gt_class
  656. label_info['is_crowd'] = is_crowd
  657. im_info['image_shape'] = np.array([im.shape[0],
  658. im.shape[1]]).astype('int32')
  659. im_info.pop('mixup')
  660. if label_info is None:
  661. return (im, im_info)
  662. else:
  663. return (im, im_info, label_info)
  664. class RandomExpand(DetTransform):
  665. """随机扩张图像,模型训练时的数据增强操作。
  666. 1. 随机选取扩张比例(扩张比例大于1时才进行扩张)。
  667. 2. 计算扩张后图像大小。
  668. 3. 初始化像素值为输入填充值的图像,并将原图像随机粘贴于该图像上。
  669. 4. 根据原图像粘贴位置换算出扩张后真实标注框的位置坐标。
  670. 5. 根据原图像粘贴位置换算出扩张后真实分割区域的位置坐标。
  671. Args:
  672. ratio (float): 图像扩张的最大比例。默认为4.0。
  673. prob (float): 随机扩张的概率。默认为0.5。
  674. fill_value (list): 扩张图像的初始填充值(0-255)。默认为[123.675, 116.28, 103.53]。
  675. """
  676. def __init__(self,
  677. ratio=4.,
  678. prob=0.5,
  679. fill_value=[123.675, 116.28, 103.53]):
  680. super(RandomExpand, self).__init__()
  681. assert ratio > 1.01, "expand ratio must be larger than 1.01"
  682. self.ratio = ratio
  683. self.prob = prob
  684. assert isinstance(fill_value, Sequence), \
  685. "fill value must be sequence"
  686. if not isinstance(fill_value, tuple):
  687. fill_value = tuple(fill_value)
  688. self.fill_value = fill_value
  689. def __call__(self, im, im_info=None, label_info=None):
  690. """
  691. Args:
  692. im (np.ndarray): 图像np.ndarray数据。
  693. im_info (dict, 可选): 存储与图像相关的信息。
  694. label_info (dict, 可选): 存储与标注框相关的信息。
  695. Returns:
  696. tuple: 当label_info为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
  697. 当label_info不为空时,返回的tuple为(im, im_info, label_info),分别对应图像np.ndarray数据、
  698. 存储与标注框相关信息的字典。
  699. 其中,im_info更新字段为:
  700. - image_shape (np.ndarray): 扩张后的图像高、宽二者组成的np.ndarray,形状为(2,)。
  701. label_info更新字段为:
  702. - gt_bbox (np.ndarray): 随机扩张后真实标注框坐标,形状为(n, 4),
  703. 其中n代表真实标注框的个数。
  704. - gt_class (np.ndarray): 随机扩张后每个真实标注框对应的类别序号,形状为(n, 1),
  705. 其中n代表真实标注框的个数。
  706. Raises:
  707. TypeError: 形参数据类型不满足需求。
  708. """
  709. if im_info is None or label_info is None:
  710. raise TypeError(
  711. 'Cannot do RandomExpand! ' +
  712. 'Becasuse the im_info and label_info can not be None!')
  713. if 'gt_bbox' not in label_info or \
  714. 'gt_class' not in label_info:
  715. raise TypeError('Cannot do RandomExpand! ' + \
  716. 'Becasuse gt_bbox/gt_class is not in label_info!')
  717. if np.random.uniform(0., 1.) < self.prob:
  718. return (im, im_info, label_info)
  719. image_shape = im_info['image_shape']
  720. height = int(image_shape[0])
  721. width = int(image_shape[1])
  722. expand_ratio = np.random.uniform(1., self.ratio)
  723. h = int(height * expand_ratio)
  724. w = int(width * expand_ratio)
  725. if not h > height or not w > width:
  726. return (im, im_info, label_info)
  727. y = np.random.randint(0, h - height)
  728. x = np.random.randint(0, w - width)
  729. canvas = np.ones((h, w, 3), dtype=np.float32)
  730. canvas *= np.array(self.fill_value, dtype=np.float32)
  731. canvas[y:y + height, x:x + width, :] = im
  732. im_info['image_shape'] = np.array([h, w]).astype('int32')
  733. if 'gt_bbox' in label_info and len(label_info['gt_bbox']) > 0:
  734. label_info['gt_bbox'] += np.array([x, y] * 2, dtype=np.float32)
  735. if 'gt_poly' in label_info and len(label_info['gt_poly']) > 0:
  736. label_info['gt_poly'] = expand_segms(label_info['gt_poly'], x, y,
  737. height, width, expand_ratio)
  738. return (canvas, im_info, label_info)
  739. class RandomCrop(DetTransform):
  740. """随机裁剪图像。
  741. 1. 若allow_no_crop为True,则在thresholds加入’no_crop’。
  742. 2. 随机打乱thresholds。
  743. 3. 遍历thresholds中各元素:
  744. (1) 如果当前thresh为’no_crop’,则返回原始图像和标注信息。
  745. (2) 随机取出aspect_ratio和scaling中的值并由此计算出候选裁剪区域的高、宽、起始点。
  746. (3) 计算真实标注框与候选裁剪区域IoU,若全部真实标注框的IoU都小于thresh,则继续第3步。
  747. (4) 如果cover_all_box为True且存在真实标注框的IoU小于thresh,则继续第3步。
  748. (5) 筛选出位于候选裁剪区域内的真实标注框,若有效框的个数为0,则继续第3步,否则进行第4步。
  749. 4. 换算有效真值标注框相对候选裁剪区域的位置坐标。
  750. 5. 换算有效分割区域相对候选裁剪区域的位置坐标。
  751. Args:
  752. aspect_ratio (list): 裁剪后短边缩放比例的取值范围,以[min, max]形式表示。默认值为[.5, 2.]。
  753. thresholds (list): 判断裁剪候选区域是否有效所需的IoU阈值取值列表。默认值为[.0, .1, .3, .5, .7, .9]。
  754. scaling (list): 裁剪面积相对原面积的取值范围,以[min, max]形式表示。默认值为[.3, 1.]。
  755. num_attempts (int): 在放弃寻找有效裁剪区域前尝试的次数。默认值为50。
  756. allow_no_crop (bool): 是否允许未进行裁剪。默认值为True。
  757. cover_all_box (bool): 是否要求所有的真实标注框都必须在裁剪区域内。默认值为False。
  758. """
  759. def __init__(self,
  760. aspect_ratio=[.5, 2.],
  761. thresholds=[.0, .1, .3, .5, .7, .9],
  762. scaling=[.3, 1.],
  763. num_attempts=50,
  764. allow_no_crop=True,
  765. cover_all_box=False):
  766. self.aspect_ratio = aspect_ratio
  767. self.thresholds = thresholds
  768. self.scaling = scaling
  769. self.num_attempts = num_attempts
  770. self.allow_no_crop = allow_no_crop
  771. self.cover_all_box = cover_all_box
  772. def __call__(self, im, im_info=None, label_info=None):
  773. """
  774. Args:
  775. im (np.ndarray): 图像np.ndarray数据。
  776. im_info (dict, 可选): 存储与图像相关的信息。
  777. label_info (dict, 可选): 存储与标注框相关的信息。
  778. Returns:
  779. tuple: 当label_info为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
  780. 当label_info不为空时,返回的tuple为(im, im_info, label_info),分别对应图像np.ndarray数据、
  781. 存储与标注框相关信息的字典。
  782. 其中,im_info更新字段为:
  783. - image_shape (np.ndarray): 扩裁剪的图像高、宽二者组成的np.ndarray,形状为(2,)。
  784. label_info更新字段为:
  785. - gt_bbox (np.ndarray): 随机裁剪后真实标注框坐标,形状为(n, 4),
  786. 其中n代表真实标注框的个数。
  787. - gt_class (np.ndarray): 随机裁剪后每个真实标注框对应的类别序号,形状为(n, 1),
  788. 其中n代表真实标注框的个数。
  789. - gt_score (np.ndarray): 随机裁剪后每个真实标注框对应的混合得分,形状为(n, 1),
  790. 其中n代表真实标注框的个数。
  791. Raises:
  792. TypeError: 形参数据类型不满足需求。
  793. """
  794. if im_info is None or label_info is None:
  795. raise TypeError(
  796. 'Cannot do RandomCrop! ' +
  797. 'Becasuse the im_info and label_info can not be None!')
  798. if 'gt_bbox' not in label_info or \
  799. 'gt_class' not in label_info:
  800. raise TypeError('Cannot do RandomCrop! ' + \
  801. 'Becasuse gt_bbox/gt_class is not in label_info!')
  802. if len(label_info['gt_bbox']) == 0:
  803. return (im, im_info, label_info)
  804. image_shape = im_info['image_shape']
  805. w = image_shape[1]
  806. h = image_shape[0]
  807. gt_bbox = label_info['gt_bbox']
  808. thresholds = list(self.thresholds)
  809. if self.allow_no_crop:
  810. thresholds.append('no_crop')
  811. np.random.shuffle(thresholds)
  812. for thresh in thresholds:
  813. if thresh == 'no_crop':
  814. return (im, im_info, label_info)
  815. found = False
  816. for i in range(self.num_attempts):
  817. scale = np.random.uniform(*self.scaling)
  818. min_ar, max_ar = self.aspect_ratio
  819. aspect_ratio = np.random.uniform(
  820. max(min_ar, scale**2), min(max_ar, scale**-2))
  821. crop_h = int(h * scale / np.sqrt(aspect_ratio))
  822. crop_w = int(w * scale * np.sqrt(aspect_ratio))
  823. crop_y = np.random.randint(0, h - crop_h)
  824. crop_x = np.random.randint(0, w - crop_w)
  825. crop_box = [crop_x, crop_y, crop_x + crop_w, crop_y + crop_h]
  826. iou = iou_matrix(
  827. gt_bbox, np.array(
  828. [crop_box], dtype=np.float32))
  829. if iou.max() < thresh:
  830. continue
  831. if self.cover_all_box and iou.min() < thresh:
  832. continue
  833. cropped_box, valid_ids = crop_box_with_center_constraint(
  834. gt_bbox, np.array(
  835. crop_box, dtype=np.float32))
  836. if valid_ids.size > 0:
  837. found = True
  838. break
  839. if found:
  840. if 'gt_poly' in label_info and len(label_info['gt_poly']) > 0:
  841. crop_polys = crop_segms(
  842. label_info['gt_poly'],
  843. valid_ids,
  844. np.array(
  845. crop_box, dtype=np.int64),
  846. h,
  847. w)
  848. if [] in crop_polys:
  849. delete_id = list()
  850. valid_polys = list()
  851. for id, crop_poly in enumerate(crop_polys):
  852. if crop_poly == []:
  853. delete_id.append(id)
  854. else:
  855. valid_polys.append(crop_poly)
  856. valid_ids = np.delete(valid_ids, delete_id)
  857. if len(valid_polys) == 0:
  858. return (im, im_info, label_info)
  859. label_info['gt_poly'] = valid_polys
  860. else:
  861. label_info['gt_poly'] = crop_polys
  862. im = crop_image(im, crop_box)
  863. label_info['gt_bbox'] = np.take(cropped_box, valid_ids, axis=0)
  864. label_info['gt_class'] = np.take(
  865. label_info['gt_class'], valid_ids, axis=0)
  866. im_info['image_shape'] = np.array(
  867. [crop_box[3] - crop_box[1],
  868. crop_box[2] - crop_box[0]]).astype('int32')
  869. if 'gt_score' in label_info:
  870. label_info['gt_score'] = np.take(
  871. label_info['gt_score'], valid_ids, axis=0)
  872. if 'is_crowd' in label_info:
  873. label_info['is_crowd'] = np.take(
  874. label_info['is_crowd'], valid_ids, axis=0)
  875. return (im, im_info, label_info)
  876. return (im, im_info, label_info)
  877. class ArrangeFasterRCNN(DetTransform):
  878. """获取FasterRCNN模型训练/验证/预测所需信息。
  879. Args:
  880. mode (str): 指定数据用于何种用途,取值范围为['train', 'eval', 'test', 'quant']。
  881. Raises:
  882. ValueError: mode的取值不在['train', 'eval', 'test', 'quant']之内。
  883. """
  884. def __init__(self, mode=None):
  885. if mode not in ['train', 'eval', 'test', 'quant']:
  886. raise ValueError(
  887. "mode must be in ['train', 'eval', 'test', 'quant']!")
  888. self.mode = mode
  889. def __call__(self, im, im_info=None, label_info=None):
  890. """
  891. Args:
  892. im (np.ndarray): 图像np.ndarray数据。
  893. im_info (dict, 可选): 存储与图像相关的信息。
  894. label_info (dict, 可选): 存储与标注框相关的信息。
  895. Returns:
  896. tuple: 当mode为'train'时,返回(im, im_resize_info, gt_bbox, gt_class, is_crowd),分别对应
  897. 图像np.ndarray数据、图像相当对于原图的resize信息、真实标注框、真实标注框对应的类别、真实标注框内是否是一组对象;
  898. 当mode为'eval'时,返回(im, im_resize_info, im_id, im_shape, gt_bbox, gt_class, is_difficult),
  899. 分别对应图像np.ndarray数据、图像相当对于原图的resize信息、图像id、图像大小信息、真实标注框、真实标注框对应的类别、
  900. 真实标注框是否为难识别对象;当mode为'test'或'quant'时,返回(im, im_resize_info, im_shape),分别对应图像np.ndarray数据、
  901. 图像相当对于原图的resize信息、图像大小信息。
  902. Raises:
  903. TypeError: 形参数据类型不满足需求。
  904. ValueError: 数据长度不匹配。
  905. """
  906. im = permute(im, False)
  907. if self.mode == 'train':
  908. if im_info is None or label_info is None:
  909. raise TypeError(
  910. 'Cannot do ArrangeFasterRCNN! ' +
  911. 'Becasuse the im_info and label_info can not be None!')
  912. if len(label_info['gt_bbox']) != len(label_info['gt_class']):
  913. raise ValueError("gt num mismatch: bbox and class.")
  914. im_resize_info = im_info['im_resize_info']
  915. gt_bbox = label_info['gt_bbox']
  916. gt_class = label_info['gt_class']
  917. is_crowd = label_info['is_crowd']
  918. outputs = (im, im_resize_info, gt_bbox, gt_class, is_crowd)
  919. elif self.mode == 'eval':
  920. if im_info is None or label_info is None:
  921. raise TypeError(
  922. 'Cannot do ArrangeFasterRCNN! ' +
  923. 'Becasuse the im_info and label_info can not be None!')
  924. im_resize_info = im_info['im_resize_info']
  925. im_id = im_info['im_id']
  926. im_shape = np.array(
  927. (im_info['image_shape'][0], im_info['image_shape'][1], 1),
  928. dtype=np.float32)
  929. gt_bbox = label_info['gt_bbox']
  930. gt_class = label_info['gt_class']
  931. is_difficult = label_info['difficult']
  932. outputs = (im, im_resize_info, im_id, im_shape, gt_bbox, gt_class,
  933. is_difficult)
  934. else:
  935. if im_info is None:
  936. raise TypeError('Cannot do ArrangeFasterRCNN! ' +
  937. 'Becasuse the im_info can not be None!')
  938. im_resize_info = im_info['im_resize_info']
  939. im_shape = np.array(
  940. (im_info['image_shape'][0], im_info['image_shape'][1], 1),
  941. dtype=np.float32)
  942. outputs = (im, im_resize_info, im_shape)
  943. return outputs
  944. class ArrangeMaskRCNN(DetTransform):
  945. """获取MaskRCNN模型训练/验证/预测所需信息。
  946. Args:
  947. mode (str): 指定数据用于何种用途,取值范围为['train', 'eval', 'test', 'quant']。
  948. Raises:
  949. ValueError: mode的取值不在['train', 'eval', 'test', 'quant']之内。
  950. """
  951. def __init__(self, mode=None):
  952. if mode not in ['train', 'eval', 'test', 'quant']:
  953. raise ValueError(
  954. "mode must be in ['train', 'eval', 'test', 'quant']!")
  955. self.mode = mode
  956. def __call__(self, im, im_info=None, label_info=None):
  957. """
  958. Args:
  959. im (np.ndarray): 图像np.ndarray数据。
  960. im_info (dict, 可选): 存储与图像相关的信息。
  961. label_info (dict, 可选): 存储与标注框相关的信息。
  962. Returns:
  963. tuple: 当mode为'train'时,返回(im, im_resize_info, gt_bbox, gt_class, is_crowd, gt_masks),分别对应
  964. 图像np.ndarray数据、图像相当对于原图的resize信息、真实标注框、真实标注框对应的类别、真实标注框内是否是一组对象、
  965. 真实分割区域;当mode为'eval'时,返回(im, im_resize_info, im_id, im_shape),分别对应图像np.ndarray数据、
  966. 图像相当对于原图的resize信息、图像id、图像大小信息;当mode为'test'或'quant'时,返回(im, im_resize_info, im_shape),
  967. 分别对应图像np.ndarray数据、图像相当对于原图的resize信息、图像大小信息。
  968. Raises:
  969. TypeError: 形参数据类型不满足需求。
  970. ValueError: 数据长度不匹配。
  971. """
  972. im = permute(im, False)
  973. if self.mode == 'train':
  974. if im_info is None or label_info is None:
  975. raise TypeError(
  976. 'Cannot do ArrangeTrainMaskRCNN! ' +
  977. 'Becasuse the im_info and label_info can not be None!')
  978. if len(label_info['gt_bbox']) != len(label_info['gt_class']):
  979. raise ValueError("gt num mismatch: bbox and class.")
  980. im_resize_info = im_info['im_resize_info']
  981. gt_bbox = label_info['gt_bbox']
  982. gt_class = label_info['gt_class']
  983. is_crowd = label_info['is_crowd']
  984. assert 'gt_poly' in label_info
  985. segms = label_info['gt_poly']
  986. if len(segms) != 0:
  987. assert len(segms) == is_crowd.shape[0]
  988. gt_masks = []
  989. valid = True
  990. for i in range(len(segms)):
  991. segm = segms[i]
  992. gt_segm = []
  993. if is_crowd[i]:
  994. gt_segm.append([[0, 0]])
  995. else:
  996. for poly in segm:
  997. if len(poly) == 0:
  998. valid = False
  999. break
  1000. gt_segm.append(np.array(poly).reshape(-1, 2))
  1001. if (not valid) or len(gt_segm) == 0:
  1002. break
  1003. gt_masks.append(gt_segm)
  1004. outputs = (im, im_resize_info, gt_bbox, gt_class, is_crowd,
  1005. gt_masks)
  1006. else:
  1007. if im_info is None:
  1008. raise TypeError('Cannot do ArrangeMaskRCNN! ' +
  1009. 'Becasuse the im_info can not be None!')
  1010. im_resize_info = im_info['im_resize_info']
  1011. im_shape = np.array(
  1012. (im_info['image_shape'][0], im_info['image_shape'][1], 1),
  1013. dtype=np.float32)
  1014. if self.mode == 'eval':
  1015. im_id = im_info['im_id']
  1016. outputs = (im, im_resize_info, im_id, im_shape)
  1017. else:
  1018. outputs = (im, im_resize_info, im_shape)
  1019. return outputs
  1020. class ArrangeYOLOv3(DetTransform):
  1021. """获取YOLOv3模型训练/验证/预测所需信息。
  1022. Args:
  1023. mode (str): 指定数据用于何种用途,取值范围为['train', 'eval', 'test', 'quant']。
  1024. Raises:
  1025. ValueError: mode的取值不在['train', 'eval', 'test', 'quant']之内。
  1026. """
  1027. def __init__(self, mode=None):
  1028. if mode not in ['train', 'eval', 'test', 'quant']:
  1029. raise ValueError(
  1030. "mode must be in ['train', 'eval', 'test', 'quant']!")
  1031. self.mode = mode
  1032. def __call__(self, im, im_info=None, label_info=None):
  1033. """
  1034. Args:
  1035. im (np.ndarray): 图像np.ndarray数据。
  1036. im_info (dict, 可选): 存储与图像相关的信息。
  1037. label_info (dict, 可选): 存储与标注框相关的信息。
  1038. Returns:
  1039. tuple: 当mode为'train'时,返回(im, gt_bbox, gt_class, gt_score, im_shape),分别对应
  1040. 图像np.ndarray数据、真实标注框、真实标注框对应的类别、真实标注框混合得分、图像大小信息;
  1041. 当mode为'eval'时,返回(im, im_shape, im_id, gt_bbox, gt_class, difficult),
  1042. 分别对应图像np.ndarray数据、图像大小信息、图像id、真实标注框、真实标注框对应的类别、
  1043. 真实标注框是否为难识别对象;当mode为'test'或'quant'时,返回(im, im_shape),
  1044. 分别对应图像np.ndarray数据、图像大小信息。
  1045. Raises:
  1046. TypeError: 形参数据类型不满足需求。
  1047. ValueError: 数据长度不匹配。
  1048. """
  1049. im = permute(im, False)
  1050. if self.mode == 'train':
  1051. if im_info is None or label_info is None:
  1052. raise TypeError(
  1053. 'Cannot do ArrangeYolov3! ' +
  1054. 'Becasuse the im_info and label_info can not be None!')
  1055. im_shape = im_info['image_shape']
  1056. if len(label_info['gt_bbox']) != len(label_info['gt_class']):
  1057. raise ValueError("gt num mismatch: bbox and class.")
  1058. if len(label_info['gt_bbox']) != len(label_info['gt_score']):
  1059. raise ValueError("gt num mismatch: bbox and score.")
  1060. gt_bbox = np.zeros((50, 4), dtype=im.dtype)
  1061. gt_class = np.zeros((50, ), dtype=np.int32)
  1062. gt_score = np.zeros((50, ), dtype=im.dtype)
  1063. gt_num = min(50, len(label_info['gt_bbox']))
  1064. if gt_num > 0:
  1065. label_info['gt_class'][:gt_num, 0] = label_info[
  1066. 'gt_class'][:gt_num, 0] - 1
  1067. gt_bbox[:gt_num, :] = label_info['gt_bbox'][:gt_num, :]
  1068. gt_class[:gt_num] = label_info['gt_class'][:gt_num, 0]
  1069. gt_score[:gt_num] = label_info['gt_score'][:gt_num, 0]
  1070. # parse [x1, y1, x2, y2] to [x, y, w, h]
  1071. gt_bbox[:, 2:4] = gt_bbox[:, 2:4] - gt_bbox[:, :2]
  1072. gt_bbox[:, :2] = gt_bbox[:, :2] + gt_bbox[:, 2:4] / 2.
  1073. outputs = (im, gt_bbox, gt_class, gt_score, im_shape)
  1074. elif self.mode == 'eval':
  1075. if im_info is None or label_info is None:
  1076. raise TypeError(
  1077. 'Cannot do ArrangeYolov3! ' +
  1078. 'Becasuse the im_info and label_info can not be None!')
  1079. im_shape = im_info['image_shape']
  1080. if len(label_info['gt_bbox']) != len(label_info['gt_class']):
  1081. raise ValueError("gt num mismatch: bbox and class.")
  1082. im_id = im_info['im_id']
  1083. gt_bbox = np.zeros((50, 4), dtype=im.dtype)
  1084. gt_class = np.zeros((50, ), dtype=np.int32)
  1085. difficult = np.zeros((50, ), dtype=np.int32)
  1086. gt_num = min(50, len(label_info['gt_bbox']))
  1087. if gt_num > 0:
  1088. label_info['gt_class'][:gt_num, 0] = label_info[
  1089. 'gt_class'][:gt_num, 0] - 1
  1090. gt_bbox[:gt_num, :] = label_info['gt_bbox'][:gt_num, :]
  1091. gt_class[:gt_num] = label_info['gt_class'][:gt_num, 0]
  1092. difficult[:gt_num] = label_info['difficult'][:gt_num, 0]
  1093. outputs = (im, im_shape, im_id, gt_bbox, gt_class, difficult)
  1094. else:
  1095. if im_info is None:
  1096. raise TypeError('Cannot do ArrangeYolov3! ' +
  1097. 'Becasuse the im_info can not be None!')
  1098. im_shape = im_info['image_shape']
  1099. outputs = (im, im_shape)
  1100. return outputs