| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556 |
- #copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
- #
- #Licensed under the Apache License, Version 2.0 (the "License");
- #you may not use this file except in compliance with the License.
- #You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- #Unless required by applicable law or agreed to in writing, software
- #distributed under the License is distributed on an "AS IS" BASIS,
- #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- #See the License for the specific language governing permissions and
- #limitations under the License.
- import os
- import cv2
- import copy
- import os.path as osp
- import numpy as np
- from .core.explanation import Explanation
- def visualize(img_file,
- model,
- explanation_type='lime',
- num_samples=3000,
- batch_size=50,
- save_dir='./'):
- model.arrange_transforms(
- transforms=model.test_transforms, mode='test')
- tmp_transforms = copy.deepcopy(model.test_transforms)
- tmp_transforms.transforms = tmp_transforms.transforms[:-2]
- img = tmp_transforms(img_file)[0]
- img = np.around(img).astype('uint8')
- img = np.expand_dims(img, axis=0)
- explaier = None
- if explanation_type == 'lime':
- explaier = get_lime_explaier(img, model, num_samples=num_samples, batch_size=batch_size)
- else:
- raise Exception('The {} explanantion method is not supported yet!'.format(explanation_type))
- img_name = osp.splitext(osp.split(img_file)[-1])[0]
- explaier.explain(img, save_dir=save_dir)
-
-
- def get_lime_explaier(img, model, num_samples=3000, batch_size=50):
- def predict_func(image):
- image = image.astype('float32')
- model.test_transforms.transforms = model.test_transforms.transforms[-2:]
- out = model.explanation_predict(image)
- return out[0]
- explaier = Explanation('lime',
- predict_func,
- num_samples=num_samples,
- batch_size=batch_size)
- return explaier
-
|