mobilenet_v1.py 8.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218
  1. # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from __future__ import absolute_import
  15. from __future__ import division
  16. from __future__ import print_function
  17. from collections import OrderedDict
  18. from paddle import fluid
  19. from paddle.fluid.param_attr import ParamAttr
  20. from paddle.fluid.regularizer import L2Decay
  21. class MobileNetV1(object):
  22. """
  23. MobileNet v1, see https://arxiv.org/abs/1704.04861
  24. Args:
  25. norm_type (str): normalization type, 'bn' and 'sync_bn' are supported
  26. norm_decay (float): weight decay for normalization layer weights
  27. conv_group_scale (int): scaling factor for convolution groups
  28. with_extra_blocks (bool): if extra blocks should be added
  29. extra_block_filters (list): number of filter for each extra block
  30. """
  31. def __init__(self,
  32. norm_type='bn',
  33. norm_decay=0.,
  34. conv_group_scale=1,
  35. conv_learning_rate=1.0,
  36. with_extra_blocks=False,
  37. extra_block_filters=[[256, 512], [128, 256], [128, 256],
  38. [64, 128]],
  39. weight_prefix_name='',
  40. num_classes=None):
  41. self.norm_type = norm_type
  42. self.norm_decay = norm_decay
  43. self.conv_group_scale = conv_group_scale
  44. self.conv_learning_rate = conv_learning_rate
  45. self.with_extra_blocks = with_extra_blocks
  46. self.extra_block_filters = extra_block_filters
  47. self.prefix_name = weight_prefix_name
  48. self.num_classes = num_classes
  49. def _conv_norm(self,
  50. input,
  51. filter_size,
  52. num_filters,
  53. stride,
  54. padding,
  55. num_groups=1,
  56. act='relu',
  57. use_cudnn=True,
  58. name=None):
  59. parameter_attr = ParamAttr(
  60. learning_rate=self.conv_learning_rate,
  61. initializer=fluid.initializer.MSRA(),
  62. name=name + "_weights")
  63. conv = fluid.layers.conv2d(
  64. input=input,
  65. num_filters=num_filters,
  66. filter_size=filter_size,
  67. stride=stride,
  68. padding=padding,
  69. groups=num_groups,
  70. act=None,
  71. use_cudnn=use_cudnn,
  72. param_attr=parameter_attr,
  73. bias_attr=False)
  74. bn_name = name + "_bn"
  75. norm_decay = self.norm_decay
  76. bn_param_attr = ParamAttr(
  77. regularizer=L2Decay(norm_decay), name=bn_name + '_scale')
  78. bn_bias_attr = ParamAttr(
  79. regularizer=L2Decay(norm_decay), name=bn_name + '_offset')
  80. return fluid.layers.batch_norm(
  81. input=conv,
  82. act=act,
  83. param_attr=bn_param_attr,
  84. bias_attr=bn_bias_attr,
  85. moving_mean_name=bn_name + '_mean',
  86. moving_variance_name=bn_name + '_variance')
  87. def depthwise_separable(self,
  88. input,
  89. num_filters1,
  90. num_filters2,
  91. num_groups,
  92. stride,
  93. scale,
  94. name=None):
  95. depthwise_conv = self._conv_norm(
  96. input=input,
  97. filter_size=3,
  98. num_filters=int(num_filters1 * scale),
  99. stride=stride,
  100. padding=1,
  101. num_groups=int(num_groups * scale),
  102. use_cudnn=False,
  103. name=name + "_dw")
  104. pointwise_conv = self._conv_norm(
  105. input=depthwise_conv,
  106. filter_size=1,
  107. num_filters=int(num_filters2 * scale),
  108. stride=1,
  109. padding=0,
  110. name=name + "_sep")
  111. return pointwise_conv
  112. def _extra_block(self,
  113. input,
  114. num_filters1,
  115. num_filters2,
  116. num_groups,
  117. stride,
  118. name=None):
  119. pointwise_conv = self._conv_norm(
  120. input=input,
  121. filter_size=1,
  122. num_filters=int(num_filters1),
  123. stride=1,
  124. num_groups=int(num_groups),
  125. padding=0,
  126. name=name + "_extra1")
  127. normal_conv = self._conv_norm(
  128. input=pointwise_conv,
  129. filter_size=3,
  130. num_filters=int(num_filters2),
  131. stride=2,
  132. num_groups=int(num_groups),
  133. padding=1,
  134. name=name + "_extra2")
  135. return normal_conv
  136. def __call__(self, input):
  137. scale = self.conv_group_scale
  138. blocks = []
  139. # input 1/1
  140. out = self._conv_norm(
  141. input, 3, int(32 * scale), 2, 1, name=self.prefix_name + "conv1")
  142. # 1/2
  143. out = self.depthwise_separable(
  144. out, 32, 64, 32, 1, scale, name=self.prefix_name + "conv2_1")
  145. out = self.depthwise_separable(
  146. out, 64, 128, 64, 2, scale, name=self.prefix_name + "conv2_2")
  147. # 1/4
  148. out = self.depthwise_separable(
  149. out, 128, 128, 128, 1, scale, name=self.prefix_name + "conv3_1")
  150. out = self.depthwise_separable(
  151. out, 128, 256, 128, 2, scale, name=self.prefix_name + "conv3_2")
  152. # 1/8
  153. blocks.append(out)
  154. out = self.depthwise_separable(
  155. out, 256, 256, 256, 1, scale, name=self.prefix_name + "conv4_1")
  156. out = self.depthwise_separable(
  157. out, 256, 512, 256, 2, scale, name=self.prefix_name + "conv4_2")
  158. # 1/16
  159. blocks.append(out)
  160. for i in range(5):
  161. out = self.depthwise_separable(
  162. out,
  163. 512,
  164. 512,
  165. 512,
  166. 1,
  167. scale,
  168. name=self.prefix_name + "conv5_" + str(i + 1))
  169. module11 = out
  170. out = self.depthwise_separable(
  171. out, 512, 1024, 512, 2, scale, name=self.prefix_name + "conv5_6")
  172. # 1/32
  173. out = self.depthwise_separable(
  174. out, 1024, 1024, 1024, 1, scale, name=self.prefix_name + "conv6")
  175. module13 = out
  176. blocks.append(out)
  177. if self.num_classes:
  178. out = fluid.layers.pool2d(
  179. input=out, pool_type='avg', global_pooling=True)
  180. output = fluid.layers.fc(
  181. input=out,
  182. size=self.num_classes,
  183. param_attr=ParamAttr(
  184. initializer=fluid.initializer.MSRA(), name="fc7_weights"),
  185. bias_attr=ParamAttr(name="fc7_offset"))
  186. return OrderedDict([('logits', out)])
  187. if not self.with_extra_blocks:
  188. return blocks
  189. num_filters = self.extra_block_filters
  190. module14 = self._extra_block(module13, num_filters[0][0],
  191. num_filters[0][1], 1, 2,
  192. self.prefix_name + "conv7_1")
  193. module15 = self._extra_block(module14, num_filters[1][0],
  194. num_filters[1][1], 1, 2,
  195. self.prefix_name + "conv7_2")
  196. module16 = self._extra_block(module15, num_filters[2][0],
  197. num_filters[2][1], 1, 2,
  198. self.prefix_name + "conv7_3")
  199. module17 = self._extra_block(module16, num_filters[3][0],
  200. num_filters[3][1], 1, 2,
  201. self.prefix_name + "conv7_4")
  202. return module11, module13, module14, module15, module16, module17