| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274 |
- #copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
- #
- #Licensed under the Apache License, Version 2.0 (the "License");
- #you may not use this file except in compliance with the License.
- #You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- #Unless required by applicable law or agreed to in writing, software
- #distributed under the License is distributed on an "AS IS" BASIS,
- #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- #See the License for the specific language governing permissions and
- #limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- from collections import OrderedDict
- import paddle.fluid as fluid
- from paddle.fluid.initializer import MSRA
- from paddle.fluid.param_attr import ParamAttr
- class ShuffleNetV2():
- def __init__(self, num_classes=None, scale=1.0):
- self.num_classes = num_classes
- self.scale = scale
- def __call__(self, input):
- scale = self.scale
- stage_repeats = [4, 8, 4]
- if scale == 0.25:
- stage_out_channels = [-1, 24, 24, 48, 96, 512]
- elif scale == 0.33:
- stage_out_channels = [-1, 24, 32, 64, 128, 512]
- elif scale == 0.5:
- stage_out_channels = [-1, 24, 48, 96, 192, 1024]
- elif scale == 1.0:
- stage_out_channels = [-1, 24, 116, 232, 464, 1024]
- elif scale == 1.5:
- stage_out_channels = [-1, 24, 176, 352, 704, 1024]
- elif scale == 2.0:
- stage_out_channels = [-1, 24, 224, 488, 976, 2048]
- else:
- raise NotImplementedError("This scale size:[" + str(scale) +
- "] is not implemented!")
- #conv1
- input_channel = stage_out_channels[1]
- conv1 = self.conv_bn_layer(
- input=input,
- filter_size=3,
- num_filters=input_channel,
- padding=1,
- stride=2,
- name='stage1_conv')
- pool1 = fluid.layers.pool2d(
- input=conv1,
- pool_size=3,
- pool_stride=2,
- pool_padding=1,
- pool_type='max')
- conv = pool1
- # bottleneck sequences
- for idxstage in range(len(stage_repeats)):
- numrepeat = stage_repeats[idxstage]
- output_channel = stage_out_channels[idxstage + 2]
- for i in range(numrepeat):
- if i == 0:
- conv = self.inverted_residual_unit(
- input=conv,
- num_filters=output_channel,
- stride=2,
- benchmodel=2,
- name=str(idxstage + 2) + '_' + str(i + 1))
- else:
- conv = self.inverted_residual_unit(
- input=conv,
- num_filters=output_channel,
- stride=1,
- benchmodel=1,
- name=str(idxstage + 2) + '_' + str(i + 1))
- output = self.conv_bn_layer(
- input=conv,
- filter_size=1,
- num_filters=stage_out_channels[-1],
- padding=0,
- stride=1,
- name='conv5')
- if self.num_classes is not None:
- output = fluid.layers.pool2d(
- input=output,
- pool_size=7,
- pool_stride=1,
- pool_padding=0,
- pool_type='avg')
- output = fluid.layers.fc(
- input=output,
- size=self.num_classes,
- param_attr=ParamAttr(initializer=MSRA(), name='fc6_weights'),
- bias_attr=ParamAttr(name='fc6_offset'))
- return OrderedDict([('logits', output)])
- return output
- def conv_bn_layer(self,
- input,
- filter_size,
- num_filters,
- stride,
- padding,
- num_groups=1,
- use_cudnn=True,
- if_act=True,
- name=None):
- conv = fluid.layers.conv2d(
- input=input,
- num_filters=num_filters,
- filter_size=filter_size,
- stride=stride,
- padding=padding,
- groups=num_groups,
- act=None,
- use_cudnn=use_cudnn,
- param_attr=ParamAttr(initializer=MSRA(), name=name + '_weights'),
- bias_attr=False)
- out = int((input.shape[2] - 1) / float(stride) + 1)
- bn_name = name + '_bn'
- if if_act:
- return fluid.layers.batch_norm(
- input=conv,
- act='relu',
- param_attr=ParamAttr(name=bn_name + "_scale"),
- bias_attr=ParamAttr(name=bn_name + "_offset"),
- moving_mean_name=bn_name + '_mean',
- moving_variance_name=bn_name + '_variance')
- else:
- return fluid.layers.batch_norm(
- input=conv,
- param_attr=ParamAttr(name=bn_name + "_scale"),
- bias_attr=ParamAttr(name=bn_name + "_offset"),
- moving_mean_name=bn_name + '_mean',
- moving_variance_name=bn_name + '_variance')
- def channel_shuffle(self, x, groups):
- num_channels = x.shape[1]
- channels_per_group = num_channels // groups
- x_shape = fluid.layers.shape(x)
- # reshape
- x = fluid.layers.reshape(
- x=x,
- shape=[
- x_shape[0], groups, channels_per_group, x_shape[2], x_shape[3]
- ])
- x = fluid.layers.transpose(x=x, perm=[0, 2, 1, 3, 4])
- # flatten
- x = fluid.layers.reshape(
- x=x, shape=[x_shape[0], num_channels, x_shape[2], x_shape[3]])
- return x
- def inverted_residual_unit(self,
- input,
- num_filters,
- stride,
- benchmodel,
- name=None):
- assert stride in [1, 2], \
- "supported stride are {} but your stride is {}".format([1,2], stride)
- oup_inc = num_filters // 2
- inp = input.shape[1]
- if benchmodel == 1:
- x1, x2 = fluid.layers.split(
- input,
- num_or_sections=[input.shape[1] // 2, input.shape[1] // 2],
- dim=1)
- conv_pw = self.conv_bn_layer(
- input=x2,
- num_filters=oup_inc,
- filter_size=1,
- stride=1,
- padding=0,
- num_groups=1,
- if_act=True,
- name='stage_' + name + '_conv1')
- conv_dw = self.conv_bn_layer(
- input=conv_pw,
- num_filters=oup_inc,
- filter_size=3,
- stride=stride,
- padding=1,
- num_groups=oup_inc,
- if_act=False,
- use_cudnn=False,
- name='stage_' + name + '_conv2')
- conv_linear = self.conv_bn_layer(
- input=conv_dw,
- num_filters=oup_inc,
- filter_size=1,
- stride=1,
- padding=0,
- num_groups=1,
- if_act=True,
- name='stage_' + name + '_conv3')
- out = fluid.layers.concat([x1, conv_linear], axis=1)
- else:
- #branch1
- conv_dw_1 = self.conv_bn_layer(
- input=input,
- num_filters=inp,
- filter_size=3,
- stride=stride,
- padding=1,
- num_groups=inp,
- if_act=False,
- use_cudnn=False,
- name='stage_' + name + '_conv4')
- conv_linear_1 = self.conv_bn_layer(
- input=conv_dw_1,
- num_filters=oup_inc,
- filter_size=1,
- stride=1,
- padding=0,
- num_groups=1,
- if_act=True,
- name='stage_' + name + '_conv5')
- #branch2
- conv_pw_2 = self.conv_bn_layer(
- input=input,
- num_filters=oup_inc,
- filter_size=1,
- stride=1,
- padding=0,
- num_groups=1,
- if_act=True,
- name='stage_' + name + '_conv1')
- conv_dw_2 = self.conv_bn_layer(
- input=conv_pw_2,
- num_filters=oup_inc,
- filter_size=3,
- stride=stride,
- padding=1,
- num_groups=oup_inc,
- if_act=False,
- use_cudnn=False,
- name='stage_' + name + '_conv2')
- conv_linear_2 = self.conv_bn_layer(
- input=conv_dw_2,
- num_filters=oup_inc,
- filter_size=1,
- stride=1,
- padding=0,
- num_groups=1,
- if_act=True,
- name='stage_' + name + '_conv3')
- out = fluid.layers.concat([conv_linear_1, conv_linear_2], axis=1)
- return self.channel_shuffle(out, 2)
|