classifier.py 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402
  1. #copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. #Licensed under the Apache License, Version 2.0 (the "License");
  4. #you may not use this file except in compliance with the License.
  5. #You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. #Unless required by applicable law or agreed to in writing, software
  10. #distributed under the License is distributed on an "AS IS" BASIS,
  11. #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. #See the License for the specific language governing permissions and
  13. #limitations under the License.
  14. from __future__ import absolute_import
  15. import numpy as np
  16. import time
  17. import math
  18. import tqdm
  19. import paddle.fluid as fluid
  20. import paddlex.utils.logging as logging
  21. from paddlex.utils import seconds_to_hms
  22. import paddlex
  23. from collections import OrderedDict
  24. from .base import BaseAPI
  25. class BaseClassifier(BaseAPI):
  26. """构建分类器,并实现其训练、评估、预测和模型导出。
  27. Args:
  28. model_name (str): 分类器的模型名字,取值范围为['ResNet18',
  29. 'ResNet34', 'ResNet50', 'ResNet101',
  30. 'ResNet50_vd', 'ResNet101_vd', 'DarkNet53',
  31. 'MobileNetV1', 'MobileNetV2', 'Xception41',
  32. 'Xception65', 'Xception71']。默认为'ResNet50'。
  33. num_classes (int): 类别数。默认为1000。
  34. """
  35. def __init__(self, model_name='ResNet50', num_classes=1000):
  36. self.init_params = locals()
  37. super(BaseClassifier, self).__init__('classifier')
  38. if not hasattr(paddlex.cv.nets, str.lower(model_name)):
  39. raise Exception(
  40. "ERROR: There's no model named {}.".format(model_name))
  41. self.model_name = model_name
  42. self.labels = None
  43. self.num_classes = num_classes
  44. self.fixed_input_shape = None
  45. def build_net(self, mode='train'):
  46. if self.fixed_input_shape is not None:
  47. input_shape = [
  48. None, 3, self.fixed_input_shape[1], self.fixed_input_shape[0]
  49. ]
  50. image = fluid.data(
  51. dtype='float32', shape=input_shape, name='image')
  52. else:
  53. image = fluid.data(
  54. dtype='float32', shape=[None, 3, None, None], name='image')
  55. if mode != 'test':
  56. label = fluid.data(dtype='int64', shape=[None, 1], name='label')
  57. model = getattr(paddlex.cv.nets, str.lower(self.model_name))
  58. net_out = model(image, num_classes=self.num_classes)
  59. softmax_out = fluid.layers.softmax(net_out, use_cudnn=False)
  60. inputs = OrderedDict([('image', image)])
  61. outputs = OrderedDict([('predict', softmax_out)])
  62. if mode == 'test':
  63. self.interpretation_feats = OrderedDict([('logits', net_out)])
  64. if mode != 'test':
  65. cost = fluid.layers.cross_entropy(input=softmax_out, label=label)
  66. avg_cost = fluid.layers.mean(cost)
  67. acc1 = fluid.layers.accuracy(input=softmax_out, label=label, k=1)
  68. k = min(5, self.num_classes)
  69. acck = fluid.layers.accuracy(input=softmax_out, label=label, k=k)
  70. if mode == 'train':
  71. self.optimizer.minimize(avg_cost)
  72. inputs = OrderedDict([('image', image), ('label', label)])
  73. outputs = OrderedDict([('loss', avg_cost), ('acc1', acc1),
  74. ('acc{}'.format(k), acck)])
  75. if mode == 'eval':
  76. del outputs['loss']
  77. return inputs, outputs
  78. def default_optimizer(self, learning_rate, lr_decay_epochs, lr_decay_gamma,
  79. num_steps_each_epoch):
  80. boundaries = [b * num_steps_each_epoch for b in lr_decay_epochs]
  81. values = [
  82. learning_rate * (lr_decay_gamma**i)
  83. for i in range(len(lr_decay_epochs) + 1)
  84. ]
  85. lr_decay = fluid.layers.piecewise_decay(
  86. boundaries=boundaries, values=values)
  87. optimizer = fluid.optimizer.Momentum(
  88. lr_decay,
  89. momentum=0.9,
  90. regularization=fluid.regularizer.L2Decay(1e-04))
  91. return optimizer
  92. def train(self,
  93. num_epochs,
  94. train_dataset,
  95. train_batch_size=64,
  96. eval_dataset=None,
  97. save_interval_epochs=1,
  98. log_interval_steps=2,
  99. save_dir='output',
  100. pretrain_weights='IMAGENET',
  101. optimizer=None,
  102. learning_rate=0.025,
  103. lr_decay_epochs=[30, 60, 90],
  104. lr_decay_gamma=0.1,
  105. use_vdl=False,
  106. sensitivities_file=None,
  107. eval_metric_loss=0.05,
  108. early_stop=False,
  109. early_stop_patience=5,
  110. resume_checkpoint=None):
  111. """训练。
  112. Args:
  113. num_epochs (int): 训练迭代轮数。
  114. train_dataset (paddlex.datasets): 训练数据读取器。
  115. train_batch_size (int): 训练数据batch大小。同时作为验证数据batch大小。默认值为64。
  116. eval_dataset (paddlex.datasets: 验证数据读取器。
  117. save_interval_epochs (int): 模型保存间隔(单位:迭代轮数)。默认为1。
  118. log_interval_steps (int): 训练日志输出间隔(单位:迭代步数)。默认为2。
  119. save_dir (str): 模型保存路径。
  120. pretrain_weights (str): 若指定为路径时,则加载路径下预训练模型;若为字符串'IMAGENET',
  121. 则自动下载在ImageNet图片数据上预训练的模型权重;若为None,则不使用预训练模型。默认为'IMAGENET'。
  122. optimizer (paddle.fluid.optimizer): 优化器。当该参数为None时,使用默认优化器:
  123. fluid.layers.piecewise_decay衰减策略,fluid.optimizer.Momentum优化方法。
  124. learning_rate (float): 默认优化器的初始学习率。默认为0.025。
  125. lr_decay_epochs (list): 默认优化器的学习率衰减轮数。默认为[30, 60, 90]。
  126. lr_decay_gamma (float): 默认优化器的学习率衰减率。默认为0.1。
  127. use_vdl (bool): 是否使用VisualDL进行可视化。默认值为False。
  128. sensitivities_file (str): 若指定为路径时,则加载路径下敏感度信息进行裁剪;若为字符串'DEFAULT',
  129. 则自动下载在ImageNet图片数据上获得的敏感度信息进行裁剪;若为None,则不进行裁剪。默认为None。
  130. eval_metric_loss (float): 可容忍的精度损失。默认为0.05。
  131. early_stop (bool): 是否使用提前终止训练策略。默认值为False。
  132. early_stop_patience (int): 当使用提前终止训练策略时,如果验证集精度在`early_stop_patience`个epoch内
  133. 连续下降或持平,则终止训练。默认值为5。
  134. resume_checkpoint (str): 恢复训练时指定上次训练保存的模型路径。若为None,则不会恢复训练。默认值为None。
  135. Raises:
  136. ValueError: 模型从inference model进行加载。
  137. """
  138. if not self.trainable:
  139. raise ValueError("Model is not trainable from load_model method.")
  140. self.labels = train_dataset.labels
  141. if optimizer is None:
  142. num_steps_each_epoch = train_dataset.num_samples // train_batch_size
  143. optimizer = self.default_optimizer(
  144. learning_rate=learning_rate,
  145. lr_decay_epochs=lr_decay_epochs,
  146. lr_decay_gamma=lr_decay_gamma,
  147. num_steps_each_epoch=num_steps_each_epoch)
  148. self.optimizer = optimizer
  149. # 构建训练、验证、预测网络
  150. self.build_program()
  151. # 初始化网络权重
  152. self.net_initialize(
  153. startup_prog=fluid.default_startup_program(),
  154. pretrain_weights=pretrain_weights,
  155. save_dir=save_dir,
  156. sensitivities_file=sensitivities_file,
  157. eval_metric_loss=eval_metric_loss,
  158. resume_checkpoint=resume_checkpoint)
  159. # 训练
  160. self.train_loop(
  161. num_epochs=num_epochs,
  162. train_dataset=train_dataset,
  163. train_batch_size=train_batch_size,
  164. eval_dataset=eval_dataset,
  165. save_interval_epochs=save_interval_epochs,
  166. log_interval_steps=log_interval_steps,
  167. save_dir=save_dir,
  168. use_vdl=use_vdl,
  169. early_stop=early_stop,
  170. early_stop_patience=early_stop_patience)
  171. def evaluate(self,
  172. eval_dataset,
  173. batch_size=1,
  174. epoch_id=None,
  175. return_details=False):
  176. """评估。
  177. Args:
  178. eval_dataset (paddlex.datasets): 验证数据读取器。
  179. batch_size (int): 验证数据批大小。默认为1。
  180. epoch_id (int): 当前评估模型所在的训练轮数。
  181. return_details (bool): 是否返回详细信息。
  182. Returns:
  183. dict: 当return_details为False时,返回dict, 包含关键字:'acc1'、'acc5',
  184. 分别表示最大值的accuracy、前5个最大值的accuracy。
  185. tuple (metrics, eval_details): 当return_details为True时,增加返回dict,
  186. 包含关键字:'true_labels'、'pred_scores',分别代表真实类别id、每个类别的预测得分。
  187. """
  188. self.arrange_transforms(
  189. transforms=eval_dataset.transforms, mode='eval')
  190. data_generator = eval_dataset.generator(
  191. batch_size=batch_size, drop_last=False)
  192. k = min(5, self.num_classes)
  193. total_steps = math.ceil(eval_dataset.num_samples * 1.0 / batch_size)
  194. true_labels = list()
  195. pred_scores = list()
  196. if not hasattr(self, 'parallel_test_prog'):
  197. self.parallel_test_prog = fluid.CompiledProgram(
  198. self.test_prog).with_data_parallel(
  199. share_vars_from=self.parallel_train_prog)
  200. batch_size_each_gpu = self._get_single_card_bs(batch_size)
  201. logging.info(
  202. "Start to evaluating(total_samples={}, total_steps={})...".format(
  203. eval_dataset.num_samples, total_steps))
  204. for step, data in tqdm.tqdm(
  205. enumerate(data_generator()), total=total_steps):
  206. images = np.array([d[0] for d in data]).astype('float32')
  207. labels = [d[1] for d in data]
  208. num_samples = images.shape[0]
  209. if num_samples < batch_size:
  210. num_pad_samples = batch_size - num_samples
  211. pad_images = np.tile(images[0:1], (num_pad_samples, 1, 1, 1))
  212. images = np.concatenate([images, pad_images])
  213. outputs = self.exe.run(
  214. self.parallel_test_prog,
  215. feed={'image': images},
  216. fetch_list=list(self.test_outputs.values()))
  217. outputs = [outputs[0][:num_samples]]
  218. true_labels.extend(labels)
  219. pred_scores.extend(outputs[0].tolist())
  220. logging.debug("[EVAL] Epoch={}, Step={}/{}".format(
  221. epoch_id, step + 1, total_steps))
  222. pred_top1_label = np.argsort(pred_scores)[:, -1]
  223. pred_topk_label = np.argsort(pred_scores)[:, -k:]
  224. acc1 = sum(pred_top1_label == true_labels) / len(true_labels)
  225. acck = sum(
  226. [np.isin(x, y)
  227. for x, y in zip(true_labels, pred_topk_label)]) / len(true_labels)
  228. metrics = OrderedDict([('acc1', acc1), ('acc{}'.format(k), acck)])
  229. if return_details:
  230. eval_details = {
  231. 'true_labels': true_labels,
  232. 'pred_scores': pred_scores
  233. }
  234. return metrics, eval_details
  235. return metrics
  236. def predict(self, img_file, transforms=None, topk=1):
  237. """预测。
  238. Args:
  239. img_file (str): 预测图像路径。
  240. transforms (paddlex.cls.transforms): 数据预处理操作。
  241. topk (int): 预测时前k个最大值。
  242. Returns:
  243. list: 其中元素均为字典。字典的关键字为'category_id'、'category'、'score',
  244. 分别对应预测类别id、预测类别标签、预测得分。
  245. """
  246. if transforms is None and not hasattr(self, 'test_transforms'):
  247. raise Exception("transforms need to be defined, now is None.")
  248. true_topk = min(self.num_classes, topk)
  249. if transforms is not None:
  250. self.arrange_transforms(transforms=transforms, mode='test')
  251. im = transforms(img_file)
  252. else:
  253. self.arrange_transforms(
  254. transforms=self.test_transforms, mode='test')
  255. im = self.test_transforms(img_file)
  256. result = self.exe.run(
  257. self.test_prog,
  258. feed={'image': im},
  259. fetch_list=list(self.test_outputs.values()))
  260. pred_label = np.argsort(result[0][0])[::-1][:true_topk]
  261. res = [{
  262. 'category_id': l,
  263. 'category': self.labels[l],
  264. 'score': result[0][0][l]
  265. } for l in pred_label]
  266. return res
  267. class ResNet18(BaseClassifier):
  268. def __init__(self, num_classes=1000):
  269. super(ResNet18, self).__init__(
  270. model_name='ResNet18', num_classes=num_classes)
  271. class ResNet34(BaseClassifier):
  272. def __init__(self, num_classes=1000):
  273. super(ResNet34, self).__init__(
  274. model_name='ResNet34', num_classes=num_classes)
  275. class ResNet50(BaseClassifier):
  276. def __init__(self, num_classes=1000):
  277. super(ResNet50, self).__init__(
  278. model_name='ResNet50', num_classes=num_classes)
  279. class ResNet101(BaseClassifier):
  280. def __init__(self, num_classes=1000):
  281. super(ResNet101, self).__init__(
  282. model_name='ResNet101', num_classes=num_classes)
  283. class ResNet50_vd(BaseClassifier):
  284. def __init__(self, num_classes=1000):
  285. super(ResNet50_vd, self).__init__(
  286. model_name='ResNet50_vd', num_classes=num_classes)
  287. class ResNet101_vd(BaseClassifier):
  288. def __init__(self, num_classes=1000):
  289. super(ResNet101_vd, self).__init__(
  290. model_name='ResNet101_vd', num_classes=num_classes)
  291. class ResNet50_vd_ssld(BaseClassifier):
  292. def __init__(self, num_classes=1000):
  293. super(ResNet50_vd_ssld, self).__init__(
  294. model_name='ResNet50_vd_ssld', num_classes=num_classes)
  295. class ResNet101_vd_ssld(BaseClassifier):
  296. def __init__(self, num_classes=1000):
  297. super(ResNet101_vd_ssld, self).__init__(
  298. model_name='ResNet101_vd_ssld', num_classes=num_classes)
  299. class DarkNet53(BaseClassifier):
  300. def __init__(self, num_classes=1000):
  301. super(DarkNet53, self).__init__(
  302. model_name='DarkNet53', num_classes=num_classes)
  303. class MobileNetV1(BaseClassifier):
  304. def __init__(self, num_classes=1000):
  305. super(MobileNetV1, self).__init__(
  306. model_name='MobileNetV1', num_classes=num_classes)
  307. class MobileNetV2(BaseClassifier):
  308. def __init__(self, num_classes=1000):
  309. super(MobileNetV2, self).__init__(
  310. model_name='MobileNetV2', num_classes=num_classes)
  311. class MobileNetV3_small(BaseClassifier):
  312. def __init__(self, num_classes=1000):
  313. super(MobileNetV3_small, self).__init__(
  314. model_name='MobileNetV3_small', num_classes=num_classes)
  315. class MobileNetV3_large(BaseClassifier):
  316. def __init__(self, num_classes=1000):
  317. super(MobileNetV3_large, self).__init__(
  318. model_name='MobileNetV3_large', num_classes=num_classes)
  319. class MobileNetV3_small_ssld(BaseClassifier):
  320. def __init__(self, num_classes=1000):
  321. super(MobileNetV3_small_ssld, self).__init__(
  322. model_name='MobileNetV3_small_ssld', num_classes=num_classes)
  323. class MobileNetV3_large_ssld(BaseClassifier):
  324. def __init__(self, num_classes=1000):
  325. super(MobileNetV3_large_ssld, self).__init__(
  326. model_name='MobileNetV3_large_ssld', num_classes=num_classes)
  327. class Xception65(BaseClassifier):
  328. def __init__(self, num_classes=1000):
  329. super(Xception65, self).__init__(
  330. model_name='Xception65', num_classes=num_classes)
  331. class Xception41(BaseClassifier):
  332. def __init__(self, num_classes=1000):
  333. super(Xception41, self).__init__(
  334. model_name='Xception41', num_classes=num_classes)
  335. class DenseNet121(BaseClassifier):
  336. def __init__(self, num_classes=1000):
  337. super(DenseNet121, self).__init__(
  338. model_name='DenseNet121', num_classes=num_classes)
  339. class DenseNet161(BaseClassifier):
  340. def __init__(self, num_classes=1000):
  341. super(DenseNet161, self).__init__(
  342. model_name='DenseNet161', num_classes=num_classes)
  343. class DenseNet201(BaseClassifier):
  344. def __init__(self, num_classes=1000):
  345. super(DenseNet201, self).__init__(
  346. model_name='DenseNet201', num_classes=num_classes)
  347. class ShuffleNetV2(BaseClassifier):
  348. def __init__(self, num_classes=1000):
  349. super(ShuffleNetV2, self).__init__(
  350. model_name='ShuffleNetV2', num_classes=num_classes)